Repository logo
 

Search Results

Now showing 1 - 2 of 2
  • Biomass and microbial lipids production by Yarrowia lipolytica W29 from eucalyptus bark hydrolysate
    Publication . Dias, Bruna; Lopes, Marlene; Fernandes, Helena; Marques, Susana; Gírio, Francisco; Belo, Isabel
    ABSTRACT: Using lignocellulosic biomass hydrolysate as a renewable and abundant feedstock for microbial lipids production is a sustainable and economic high-potential approach. This study investigated the potential of the oleaginous yeast Yarrowia lipolytica to produce lipids-rich biomass from eucalyptus bark hydrolysate (EBH) obtained by enzymatic hydrolysis of the biomass pretreated by steam explosion. The effect of EBH concentration (undiluted and 1:3 v/v diluted) and medium supplementation (CSL and KH2PO4) was evaluated in Erlenmeyer flasks and lab-scale stirred tank bioreactor, respectively. Additionally, the effect of volumetric oxygen transfer coefficient (kLa) and mode of operation (batch and two-stage repeated batch) was also assessed in the bioreactor. Under the best experimental conditions (undiluted EBH, 2 g center dot L-1 CSL, 1.8 g center dot L-1 (NH4)2SO4, and kLa of 66 h-1), Y. lipolytica W29 grown in batch cultures accumulated 26 % (w/w) of intracellular lipids, corresponding to 5.6 g center dot L-1 of concentration. Lipids of Y. lipolytica were highly unsaturated and mainly composed of oleic acid (48 %), followed by palmitoleic (20 %), linoleic (17 %) and palmitic acids (14 %). This composition of Y. lipolytica lipids suggests their potential use as feedstock for biodiesel (a renewable biofuel). This work demonstrated the robust features of Y. lipolytica W29 as a potential lipids production platform to implement lignocellulose-based biorefineries.
  • Alternative feedstocks for high-quality biodiesel: Lipid production from eucalyptus bark hydrolysate by Yarrowia lipolytica W29 using different cultivation modes
    Publication . Dias, Bruna; Lopes, Marlene; Marques, Susana; Gírio, Francisco; Belo, Isabel
    ABSTRACT: Microbial lipids produced by yeasts from lignocellulosic biomass are a promising feedstock for the biodiesel industry, providing a renewable energy source as an alternative to traditional fossil fuels. This study investigated the potential of Yarrowia lipolytica W29 to produce lipid-rich biomass from undetoxified sugar-concentrated eucalyptus bark hydrolysate (EBH). The lipid concentrations achieved in batch cultures (13.4 g L-1) were the highest for wild-type Y. lipolytica strains in lignocellulosic hydrolysates. Different two-stage cultivation modes (repeated batch, continuous-feeding fed-batch, and pulse fed-batch) were studied to enhance biomass and lipid production. The cell and lipid mass was higher in pulse fed-batch and continuous-feeding fed-batch cultures than batch cultures. Production of citric acid, a side product of industrial interest, was improved in the continuous-feeding fed-batch culture. Microbial lipids produced by Y. lipolytica W29 were highly unsaturated and mainly composed of oleic acid (50% to 53%). The estimated properties of the biodiesel that would be obtained from these intracellular lipids would meet the international biodiesel standards EN 14214 and ASTM D6751. This study demonstrates the feasibility of using EBH for Y. lipolytica lipid production and promotes the sustainable production of high-quality biodiesel from lignocellulosic feedstocks.