Repository logo
 
Loading...
Profile Picture

Search Results

Now showing 1 - 3 of 3
  • Intercomparison of opto-thermal spectral measurements for concentrating solar thermal receiver materials from room temperature up to 800 °C
    Publication . Caron, Simon; Farchado, Meryem; San Vicente, Gema; Morales, Angel; Ballestrin, Jesus; Carvalho, Maria João; Páscoa, Soraia; Baron, Estelle; Disdier, Angela; Guillot, Emmanuel; Escape, Christophe; Binyamin, Yaniv; Baidossi, Mubeen; Sutter, Florian; Roger, Marc; Manzano-Agugliaro, Francisco
    ABSTRACT: An intercomparison of opto-thermal spectral measurements has been performed for some relevant receiver materials in concentrating solar thermal applications, from room temperature up to 800 degrees C. Five European laboratories performed spectral measurements at room temperature, while two laboratories performed infrared spectral measurements at operating temperature up to 800 degrees C. Relevant materials include Haynes 230 (oxidized, Pyromark 2500 and industrial black coating) and silicon carbide. Two key figures of merit were analyzed: i) solar absorptance alpha sol at room temperature, over the spectral range [0.3 - 2.5] mu m, ii) thermal emittance epsilon th(T), over the common spectral range [2-14] mu m, derived from spectral measurements performed from room temperature up to 800 degrees C. Oxidized H230 reached an alpha sol value of 90.9 +/- 1.0%. Pyromark 2500 reached an alpha sol value of 96.3 +/- 0.5%, while the industrial black coating achieved an alpha sol value of 97.0 +/- 0.4%. Silicon carbide reached an alpha sol value of 93.5 +/- 1.1%. Low standard deviations in alpha sol indicate reproducible measurements at room temperature. For oxidized H230, the epsilon th,calc(T) value varied from 55% at room temperature up to 81% at 800 degrees C. For Pyromark 2500 and the industrial black coating, epsilon th,calc(T) fluctuated between 90% and 95%, with a weak temperature dependence. For silicon carbide, epsilon th,calc(T) varied from 70% at room temperature up to 86% at 800 degrees C. The typical standard deviation among participating laboratories is about 3%. epsilon th,meas(T) values derived from spectral measurements at operating temperature were consistent within a few percentage points in comparison to epsilon th,calc(T) values derived from spectral measurements at room temperature.
  • The importance of developing accelerated tests on the reliability of solar absorber and solar reflector coatings
    Publication . Cunha Diamantino, Teresa; Gonçalves, Rita; Páscoa, Soraia; Alves, Isabel N.; Carvalho, Maria João; Fernández-García, Aránzazu; Wette, Johannes; Sutter, Florian
    ABSTRACT: Selective absorber coatings for solar thermal collectors and reflector coatings for Concentrating Solar Power (CSP) plants are the key components of these technologies and their durability is one of their most important characteristics. They should be low cost and withstand 20-30 years under different kinds of environments without significant loss of optical performance. Commercially, there are different physical vapour deposition (PVD) coatings for aluminium absorbers and reflectors. Results obtained with two commercial PVD solar absorber coatings (SA) and two solar reflector coatings (SR), under different accelerated aging tests (AAT), are presented and correlated with outdoor exposure. An Outdoor Exposure Testing (OET) site with maritime and industrial influence was used for an exposure campaign of the absorbers and reflectors for two years. Alternative artificial aging tests are proposed for absorbers and reflectors that better reproduce the corrosion mechanism obtained in natural conditions with maritime and industrial influence. The characterization of the coatings and degradation mechanisms of different aluminium absorbers and reflectors were evaluated optically, morphologically and chemically. The results obtained in an atmosphere with high corrosivity as in marine and/or industrial areas are a reliable way to verify the corrosion resistance of new materials in a short time and are a valuable tool to validate the different methodologies of accelerated aging tests.
  • Detection of corrosion on silvered glass reflectors via image processing
    Publication . Wiesinger, Florian; Baghouil, Sarah; Le Baron, Estelle; Collignon, Romain; Santos, Filipa; Cunha Diamantino, Teresa; Catarino, Isabel; Facão, Jorge; Ferreira, Cristina; Páscoa, Soraia; Sutter, Florian; Fernández-García, Aránzazu; Wette, Johannes
    ABSTRACT: A novel characterization technique based on image analysis is presented, intended to complement state-of-the-art reflectometer measurements. The technique is developed by experts from different laboratories (OPAC, AGC, CEA and LNEG), which subsequently conduct two Round Robin experiments on corroded solar reflectors for validation. Regarding the inter-comparability, it is found that parameters like the corrosion spot density or the penetration maximum on coated edges exhibit an average coefficient of variation of 62.6 % and 54.9 %. Better agreement is found for parameters like the total corroded area and the maximum edge corrosion penetration, with coefficients of variation of 14.3 % and 13.4 %, respectively. The developed methodology is further applied during a 68-month lasting outdoor exposure campaign of two types of solar reflectors at two representative sites, one exhibiting corrosivity class C2 and the other C3. On the commercial coating RL1, a total corroded area of 59 mm2 and 426 mm2 is measured after the outdoor exposure on the C2 and the C3 site, respectively, while on the novel low-lead coated reflector RL3 corresponding values are 280 mm2 and 1308 mm2. This shows the superior quality of the coating RL1 in terms of corrosion resistance. Furthermore, the analysis highlights the importance of proper edge sealing for corrosion protection, since corrosion penetration is increased by a factor between 1.3 and 4.0 if the edges are unprotected. The reflectance decrease after the outdoor exposure is regarded as negligible (0.000 - 0.005), thus not permitting any of the conclusions that are made from the novel image analysis technique.