Loading...
60 results
Search Results
Now showing 1 - 10 of 60
- The effects of tantalum addition on the microtexture and mechanical behaviour of tungsten for ITER applicationsPublication . Tejado, Elena; Carvalho, Patricia Almeida; Munoz, A.; Dias, Marta; Correia, J.B.; Mardolcar, U. V.; Pastor, Jose YgnacioTungsten (W) and its alloys are very promising materials for producing plasma-facing components (PFCs) in the fusion power reactors of the near future, even as a structural part in them. However, whereas the properties of pure tungsten are suitable for a PFC, its structural applications are still limited due to its low toughness, ductile to brittle transition temperature and recrystallization behaviour. Therefore, many efforts have been made to improve its performance by alloying tungsten with other elements. Hence, in this investigation, the thermo-mechanical performance of two new tungsten-tantalum materials has been evaluated. Materials with W–5wt.%Ta and W–15wt.%Ta were processed by mechanical alloying (MA) and later consolidation by hot isostatic pressing (HIP), with distinct settings for each composition. Thus, it was possible to determine the relationship between the microstructure and the addition of Ta with the macroscopic mechanical properties. These were measured by means of hardness, flexural strength and fracture toughness, in the temperature range of 300–1473 K. The microstructure and the fracture surfaces features of the tested materials were analysed by Field Emission Scanning Electron Microscopy (FESEM).
- Nanodiamond dispersions in nanostructured metalsPublication . Nunes, D.; Correia, J.B.; Carvalho, Patricia Almeida
- Gibbs-Thomson effect as driving force for liquid film migration: Converting metallic into ceramic fibers through intrinsic oxidationPublication . Dias, Marta; Rosinski, M.; Rodrigues, P. C. R.; Correia, J.B.; Carvalho, Patricia AlmeidaABSTRACT: Liquid film migration is of great practical importance in materials engineering. The phenomenon has been shown to depend on thermal gradients and coherency strain, but no single driving mechanism seems capable of justifying the whole array of experimental observations. On the other hand, the inevitable capillarity effects are often disregarded due to the unknown 3-dimensional geometry of the system. Here, we present evidence of liquid film migration governed primarily by capillarity through a microstructural setup of cylindrical interfaces that allows clear interpretation and modeling. The experiments rely on the strong oxygen-gettering ability of tantalum fibers dispersed in a tungsten matrix and on field-enhanced diffusivity provided by pulse plasma compaction. Tantalum scavenges the residual oxygen present in the W powder and, as a result, oxide films grow around the fibers. These oxide tubes, in liquid state during sintering, migrate toward the fiber axis and eventually become oxide rods surrounded by metallic Ta. The process is driven by the Gibbs-Thomson effect that generates the required composition gradient across the liquid film. An analytical description of the film evolution is implemented by combining the incoming O flux with capillarity-driven migration. Possible contributions from other mechanisms are examined and the relevance of the Gibbs-Thomson effect to the general phenomenon of liquid film migration is established.
- Histological and ultrastructural observations of daphina magna exposed to diamon nanoparticlesPublication . Matos, A. Alves de; Diniz, M. S.; Mendonça, E.; Peres, I.; Silva, Luís; Correia, J.B.; Picado, Ana
- Structural and Optical Characterization of Mechanochemically Synthesized CuSbS2† [Abstract]Publication . Esperto, Luís; Figueira, Isabel; Mascarenhas, João; Silva, Teresa; Correia, J.B.; Neves, FilipeABSTRACT: The present work describes experimental studies related to the characterization of CuSbS2 directly synthesized after 2 h of mechanochemical synthesis (MCS) at 340 rpm, starting from mixtures of elemental powders. X-ray diffraction (XRD) and UV-VIS-NIR spectroscopy were carried out to analyze the crystal structure, degree of crystallinity, crystallite size and optical properties of the mechanochemically synthesized CuSbS2 powders. Rietveld refinement was carried out using Diffrac. TOPAS (Bruker AXS). Thermal stability of the synthesized materials was evaluated by the vacuum thermal heat treatment of the mechanochemically synthesized CuSbS2 powders at 350 °C for 24 h. Furthermore, the CuSbS2 powders were also analyzed by field-emission scanning electron microscopy (FE-SEM), laser diffraction, and differential thermal analysis.
- Irradiation damage on CrNbTaVWx high entropy alloysPublication . Martins, Ricardo; Correia, J.B.; Czarkowski, P.; Miklaszewski, R.; Malaquias, A.; Mateus, R.ABSTRACT: CrNbTaVWx high-entropy alloys have been developed for plasma facing components to be applied in nuclear fusion reactors. The CrNbTaVWx (x = 1 and 1.7) compositions were prepared by ball milling and consolidated at 1600 degrees C under 90 MPa. To study the irradiation resistance of these materials, deuterium plasmas were used to irradiate the samples in the PF-1000U facility with 1 and 3 discharges. Structural changes before and after irradiation were analyzed by scanning electron microscopy coupled with energy dispersive X-ray spectroscopy. Nuclear reaction analysis was carried out with 1000 and 2300 keV 3He+ ion beams to evaluate the profile and amount of retained deuterium on the irradiated samples. After irradiation, the sample with higher W content revealed swelling and melting for all discharges, while in the case of CrNbTaVW only blisters were observed. The deuterium retention was higher for CrNbTaVW1.7 when compared with CrNbTaVW for 3 discharges applied.
- Processamento de materiais termoelétricos baseados na tetraedrite usando minério de tetraedrite-tenantitePublication . Esperto, Luís; Figueira, Isabel; Mascarenhas, João; Salgueiro, Rute; Silva, Teresa; Lopes, E.B.; Gonçalves, António Pereira; Correia, J.B.; de Oliveira, Daniel Pipa Soares; Almeida, P.; Neves, FilipeRESUMO: O desenvolvimento e implementação de tecnologias com baixo potencial de aquecimento global e energeticamente eficientes requer uma contínua inovação na área dos materiais para a energia. Nesta estratégia insere-se a pesquisa sobre o processamento de materiais termoelétricos baseados na tetraedrite. No presente trabalho procede-se à avaliação da viabilidade da incorporação direta, sem qualquer pré-tratamento, de minério da série tetraedrite-tenantite no processamento de materiais à base de tetraedrite por síntese mecanoquímica. Para tal prepararam-se misturas de pós contendo diferentes rácios de amostras de tetraedrite sintética, também obtida por síntese mecanoquímica, e de amostras de minério, recolhidas na mina de Neves-Corvo e na escombreira da mina do Barrigão. A caraterização estrutural e microestrutural dos materiais processados após 1 h e 2 h de síntese mecanoquímica permitiu verificar a formação de um composto constituído por tetraedrite-tenantite-(Fe) como fase principal, independentemente do minério de origem. Estes resultados são uma indicação do sucesso da abordagem seguida.
- Tungsten microstructural changes induced by ISTTOK plasma dischargesPublication . Mateus, R.; Carvalho, Patricia Almeida; Correia, J.B.; Nunes, D.; Gomes, R. B.; Duarte, P.; Fernandes, H.; Silva, C.; Alves, E.
- An integrated program of characterisation and effects evaluation of nanoparticles in the aquatic environemntPublication . Picado, Ana; Correia, J.B.; Mendonça, E.; Diniz, M. S.
- Multiscale Copper-uDiamond Nanostructured CompositesPublication . Nunes, D.; Livramento, Vanessa; Fernandes, H.; Silva, C.; Shohoji, Nobumitsu; Correia, J.B.; Carvalho, Patricia AlmeidaNanostructured copper-diamond composites can be tailored for thermal management applications at high temperature. A novel approach based on multiscale diamond dispersions is proposed for the production of this type of materials: a Cu-nDiamond composite produced by high-energy milling is used as a nanostructured matrix for further dispersion of micrometer sized diamond. The former offers strength and microstructural thermal stability while the latter provides high thermal conductivity. A series of Cu-nDiamond mixtures have been milled to define the minimum nanodiamond fraction suitable for matrix refinement and thermal stabilization. A refined matrix with homogenously dispersed nanoparticles could be obtained with 4 at.% nanodiamond for posterior mixture with ƒÝDiamond and subsequent consolidation. In order to define optimal processing parameters, consolidation by hot extrusion has been carried out for a Cu-nDiamond composite and, in parallel, for a mixture of pure copper and ÝDiamond. The materials produced were characterized by X-ray diffraction, scanning and transmission electron microscopy and microhardness measurements.