Repository logo
 
Loading...
Profile Picture

Search Results

Now showing 1 - 2 of 2
  • Intercomparison of opto-thermal spectral measurements for concentrating solar thermal receiver materials from room temperature up to 800 °C
    Publication . Caron, Simon; Farchado, Meryem; San Vicente, Gema; Morales, Angel; Ballestrin, Jesus; Carvalho, Maria João; Páscoa, Soraia; Baron, Estelle; Disdier, Angela; Guillot, Emmanuel; Escape, Christophe; Binyamin, Yaniv; Baidossi, Mubeen; Sutter, Florian; Roger, Marc; Manzano-Agugliaro, Francisco
    ABSTRACT: An intercomparison of opto-thermal spectral measurements has been performed for some relevant receiver materials in concentrating solar thermal applications, from room temperature up to 800 degrees C. Five European laboratories performed spectral measurements at room temperature, while two laboratories performed infrared spectral measurements at operating temperature up to 800 degrees C. Relevant materials include Haynes 230 (oxidized, Pyromark 2500 and industrial black coating) and silicon carbide. Two key figures of merit were analyzed: i) solar absorptance alpha sol at room temperature, over the spectral range [0.3 - 2.5] mu m, ii) thermal emittance epsilon th(T), over the common spectral range [2-14] mu m, derived from spectral measurements performed from room temperature up to 800 degrees C. Oxidized H230 reached an alpha sol value of 90.9 +/- 1.0%. Pyromark 2500 reached an alpha sol value of 96.3 +/- 0.5%, while the industrial black coating achieved an alpha sol value of 97.0 +/- 0.4%. Silicon carbide reached an alpha sol value of 93.5 +/- 1.1%. Low standard deviations in alpha sol indicate reproducible measurements at room temperature. For oxidized H230, the epsilon th,calc(T) value varied from 55% at room temperature up to 81% at 800 degrees C. For Pyromark 2500 and the industrial black coating, epsilon th,calc(T) fluctuated between 90% and 95%, with a weak temperature dependence. For silicon carbide, epsilon th,calc(T) varied from 70% at room temperature up to 86% at 800 degrees C. The typical standard deviation among participating laboratories is about 3%. epsilon th,meas(T) values derived from spectral measurements at operating temperature were consistent within a few percentage points in comparison to epsilon th,calc(T) values derived from spectral measurements at room temperature.
  • Advanced cyclic accelerated aging testing of solar reflector materials
    Publication . Wette, Johannes; Sutter, Florian; Tu, Mai; Fernández-Garcia, Aránzazu; Buendia, Francisco; Carvalho, Maria João; Cunha Diamantino, Teresa
    ABSTRACT: Lifetime prediction methods for the components of concentrated solar power (CSP) plants have been in the focus of interest of manufacturers and plant developers for the past years. Recently, an accelerated aging standard for solar mirrors was published by the Spanish AENOR committee [1]. This standard allows performing comparative testing but it is not suited to derive meaningful life-time estimations. Firstly, the testing defined in the standard is not aggressive enough to produce significant degradation on most of the materials and secondly, it has been shown that the passing of these tests does not guarantee a high durability during outdoor exposure [2]. These findings have proven the need for the investigation of more realistic procedures. To provoke the mechanisms that are detected during outdoor exposure, a more realistic application of environmental stresses is being investigated. In this work a series of tests is conducted in which several weathering stresses are combined and applied in a cyclic manner. Some of these cycles have shown to correlate better with real outdoor behavior.