Repository logo
 
Loading...
Profile Picture
Person

SHOHOJI, Nobumitsu

Search Results

Now showing 1 - 2 of 2
  • Synthesis of Non-Cubic Nitride Phases of Va-Group Metals (V, Nb, and Ta) from Metal Powders in Stream of NH3 Gas under Concentrated Solar Radiation
    Publication . Shohoji, Nobumitsu; Oliveira, Fernando Almeida Costa; Galindo, José; Rodriguez, Jose; Cañadas, Inmaculada; Fernandes, Jorge Cruz; Rosa, Luís Guerra
    ABSTRACT: Using a high-flux solar furnace, loosely compacted powders of Va-group transition metal (V, Nb, and Ta) were reacted with stream of NH3 gas (uncracked NH3 gas) being heated by concentrated solar beam to a temperature (T) range between 600 and 1000 degrees C. From V, sub-nitride V2N (gamma phase) and hypo-stoichiometric mono-nitride VN possessing fcc (face-centered cubic) crystal lattice structure (delta phase) were synthesized. On the other hand, in the reaction product from Nb and Ta, hexagonal mono-nitride phase with N/M atom ratio close to 1 (epsilon phase) was detected. The reaction duration was normalized to be 60 min. In a conventional industrial or laboratory electric furnace, the synthesis of mono-nitride phase with high degree of crystallinity that yield sharp XRD peaks for Va-group metal might take a quite long duration even at T exceeding 1000 degrees C. In contrast, mono-nitride phase MN of Va-group metal was synthesized for a relatively short duration of 60 min at T lower than 1000 degrees C being co-existed with lower nitride phases.
  • Thermal decomposition of δ-MoN and ε-Fe2N synthesized under concentrated solar radiation in NH3 gas stream
    Publication . Cañadas, Inmaculada; Oliveira, Fernando Almeida Costa; Rodriguez, Jose; Shohoji, Nobumitsu
    ABSTRACT: Decomposition temperatures of δ-MoN and ε-Fe2N synthesized with flowing NH3 gas under concentrated solar radiation heating were evaluated by Differential Scanning Calorimetry (DSC) in Argon (Ar) gas environment. The measured decomposition temperature of δ-MoN and ε-Fe2N were dependent on the solar synthesis conditions, particularly either NH3 or N2 gas flow rate at temperature. Sample containing δ-MoN showed two exothermic peaks around 680 and 900 ◦C, attributed to the reactions of δ-phase into γ-single-phase and (γ+β)-two-phase Mo2N, respectively, attributed to the dissociation reaction of δ-phase into γ-single phase and the dissociation reaction of γ-phase into metallic M saturated with N, respectively. Decomposition of ε-Fe2N took place into γ’-Fe4N in two steps occurring at 606 and 660 ◦C, respectively. When N2 instead of ammonia (NH3) gas was used, complete dissociation of γ’-Fe4N into Fe took place at around 610 ◦C. Full decomposition of γ’-Fe4N into metallic α-Fe(N) was corroborated by X-ray diffraction (XRD) analysis.