Loading...
25 results
Search Results
Now showing 1 - 10 of 25
- Gasification study of cynara cardunculus to produce hydrogen rich gasPublication . Franco, Carlos; Lopes, Helena; Pinto, Filomena; Andre, Rui N.; Gulyurtlu, Ibrahim; Cabrita, IsabelThe need to substitute fossil fuel feedstocks with endogeneous biomass to produce energy with lower environmental impact makes necessary to develop innovative and technologically more advanced processes for energy production. Gasification of Cynara cardunculus L. (cardoon) alone and mixed with Eucalyptus was carried out in a bench scale fluidized bed gasifier to study the influence of operating parameters that could lead to a gas rich in hydrogen. The gasification tests were carried out using a mixture of oxygen and steam, as gasifying agent, to avoid the dilution effect of nitrogen that exists in air. The effect of catalysts addition to the bed on gas composition was analyzed as well as the influence in the level of contaminants like H2S, HCl, NH3 and tars in the gas produced. Steam and temperature had a positive effect by promoting the hydrogen production. The higher heating value of the gas produced was determined to be in the range 12 – 15 kJ/nm3 in a dry-nitrogen-free basis. Cardoon contains N, S and Cl which may give rise to problems during the gasification process and to the eventual use of the syngas produced. The results obtained showed that the presence of contaminants could be decreased through retention in the solid phase and by employing a condensation system to separate out pollutants in the liquid phase. This paper will fully present and discuss the results obtained with the gasification of cynara cardunculus and eucalyptus in a fluidized bed gasifier.
- Toxicity of Ashes Produced During the Combustion and Co-combustion of Coal and Meat and Bone Meal in a Fluidized- Bed ReactorPublication . Barbosa, Rui; Lapa, Nuno; Lopes, Helena; Gulyurtlu, Ibrahim; Mendes, BenildeThe replacement of fossil fuels by renewable fuels can contribute to improve the environmental performance of the power production and to move forward in the sustainability way. The experience has shown that the availability of alternative fuels can be an obstacle for its extensive use for energy production, since biomass is not always available. The use of non-hazardous wastes may be a good alternative to biomass, mainly if they are economically unattractive for recycling or if they present a high cost for land-filling. The co-firing of non-hazardous wastes with coal is, therefore, a subject of great interest for the sustainability of energy production and the reduction of the emissions of fossil greenhouse gases. The use of these wastes for energy is promising if they combine well with other fuels during the conversion process for energy production and have no negative effect on the combustion system, on the ash quality and on the gaseous emissions.
- Chemical and ecotoxicological properties of ashes produced in the co-combustion of coal and sewage sludgePublication . Barbosa, Rui; Lapa, Nuno; Boavida, Dulce; Lopes, Helena; Mendes, Benilde; Gulyurtlu, Ibrahim
- Carbon-based materials prepared from pine gasification residues for acetaminophen adsorptionPublication . Galhetas, M.; Mestre, A. S.; Pinto, Moisés L.; Gulyurtlu, Ibrahim; Lopes, Helena; Carvalho, A. P.Fly ash, a residue produced frompine gasification,was used as precursor of carbon-basedmaterials assayed in acetaminophen adsorption. Materials prepared by activation with K2CO3, presented high porosity development (ABET 1200m2 g1) and samples calcined at 900 C presented high volumes of large micropores and mesopores. Kinetic and equilibrium acetaminophen adsorption data showed that the process obeys to the pseudo-second order kinetic equation and Langmuir model, respectively. The rate of acetaminophen adsorption depends of the presence of larger micropores. For the lab-made samplesmonolayer adsorption capacities attained values similar to those of commercial carbons. The influence of themicropore size distribution of the carbons in the acetaminophen adsorption process justified the lower adsorption affinities of the lab-made carbons. The importance of pores of a specific dimension (0.7 nm) to enhance the affinity of the molecule towards the carbon surfacewas demonstrated. The increase of temperature lead to highermonolayer adsorption capacities, most likely due to the easier accessibility of the acetaminophen species to the narrowest micropores.
- Environmentally friendly matrix effect matching evaluation for the major elements in solid biofuel characterization by atomic absorption spectrometryPublication . Trancoso, Maria Ascensão; Lopes, Helena; Teixeira, P. Alexandra; Calisto, Sandra C.The thermo-chemical conversion of biomass has become increasingly important, from the last decade, due to the need to reduce CO2 emissions and to increase renewable energy sources. Currently, the use of biomass already has a strong economic environmental and social impact. The biomass source can be very different where by biomass characterization is a crucial task allowing the prediction and prevention of problemas associated with biofuel burning.
- Biomass fly ashes as low-cost chemical agents for Pb removal from synthetic and industrial wastewatersPublication . Barbosa, Rui; Lapa, Nuno; Lopes, Helena; Gunther, Annika; Dias, Diogo; Mendes, BenildeThe main aim of this work was to study the removal efficiency of Pb from synthetic and industrial wastewaters by using biomass fly ashes. The biomass fly ashes were produced in a biomass boiler of a pulp and paper industry. Three concentrations of Pb2+ were tested in the synthetic wastewater (1, 10 and 1000 mg Pb/L). Moreover, two different wastewaters were collected in an industrial wastewater treatment plant (IWWTP) of an industry of lead-acid batteries: (i) wastewater of the equalization tank, and (ii) IWWTP effluent. All the wastewaters were submitted to coagulation–flocculation tests with a wide range of biomass fly ashes dosage (expressed as Solid/Liquid – S/L – ratios). All supernatants were characterized for chemical and ecotoxicological parameters. The use of biomass fly ashes has reduced significantly the Pb concentration in the synthetic wastewater and in the wastewaters collected in the IWWTP. For example, the definitive coagulation–flocculation assays performed over the IWWTP effluent presented a very low concentration of Pb (0.35 mg/L) for the S/L ratio of 1.23 g/L. Globally, the ecotoxicological characterization of the supernatants resulting from the coagulation–flocculation assays of all wastewaters has indicated an overall reduction on the ecotoxicity of the crude wastewaters, due to the removal of Pb.
- Leaching behaviour and ecotoxicity evaluation of chars from the pyrolysis of forestry biomass and polymeric materialsPublication . Bernardo, Maria; Mendes, S.; Lapa, Nuno; Gonçalves, Maria Margarida; Mendes, Benilde; Pinto, Filomena; Lopes, HelenaThe main objective of this study was to assess the environmental risk of chars derived from the pyrolysis of mixtures of pine, plastics, and scrap tires, by studying their leaching potential and ecotoxicity. Relationships between chemical composition and ecotoxicity were established to identify contaminants responsible for toxicity. Since metallic contaminants were the focus of the present study, an EDTA washing step was applied to the chars to selectively remove metals that can be responsible for the observed toxicity. The results indicated that the introduction of biomass to the pyrolysis feedstock enhanced the acidity of chars and promote the mobilisation of inorganic compounds. Chars resulting from the pyrolysis of blends of pine and plastics did not produce ecotoxic eluates. A relationship between zinc concentrations in eluates and their ecotoxicity was found for chars obtained from mixtures with tires. A significant reduction in ecotoxicity was found when the chars were treated with EDTA, which was due to a significant reduction in zinc in chars after EDTA washing.
- Insights into PCDD/Fs and PAHs in biomass boilers envisaging risks of ash use as fertilizersPublication . Lopes, Helena; Proença, SusanaABSTRACT: Since ashes are a possible source of Persistent Organic Pollutants (POPs) contamination, their application in soils must be subject to more study and control. In this scope, feed residual forest biomasses and biomass ashes, collected along one year in four biomass power stations, were characterized mainly for their polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans (PCDD/Fs) and Polycyclic Aromatic Hydrocarbons (PAHs) contents. The biomasses present concerning levels of Cl (0.04-0.28%) that may lead to PCDD/Fs formation. The biomasses also contain OCDD (29-260 ng/kg) and 1,2,3,4,6,7,8-HpCDD (35 ng/kg) that may contribute to increased Toxic Equivalents (TEQs) of ashes, possibly involving dechlorination and ash enrichment mechanisms. While the WHO2005-TEQs in bottom ashes (14-20 ng TEQ/kg) reaches the proposed limit (20 ng TEQ/kg) for ash use as fertilizers, in fly ashes (35-1139 ng TEQ/kg) the limit is exceeded. PAHs are below 0.02 mg/kg in bottom ashes and 1.5-2.5 mg/kg in fly ashes, complying with the proposed limit of 6 mg/kg. As bottom and fly ash streams may contain different ash flows, a clear definition of ash mixes is required. Correlations between unburned carbon (C), PAHs and PCDD/Fs were not found, which highlights the need for compulsory PCDD/Fs analysis in ashes, independently of their origin, burnout degree or levels of other contaminants. A sensitivity analysis was performed to evaluate the impact of handling non-detected values, which showed more impact for TEQs values close to the proposed regulatory limit of PCDD/Fs. These findings highlight the need to define reporting protocols of analytical results for risk assessments and conformity evaluation.
- Use of chemical fractionation to understand partitioning of biomass ash constituents during co-firing in gluidized bed combustionPublication . Teixeira, P. Alexandra; Lopes, Helena; Gulyurtlu, Ibrahim; Lapa, Nuno
- Benefits and drawbacks of energetic valorisation of Eucalyptus Globulus stumps by thermochemical processesPublication . Pinto, Filomena; Andre, Rui N.; Lopes, Helena; Neves, Diogo; Varela, Francisco; Santos, João Navalho; Miranda, Migueln the pulp and paper industry in Iberian Peninsula there is an intensive use of eucalyptus globulus that has a fast growth and a high productivity. There are large areas of forest dedicated to its growth. After 9 to 12 year rotation cycles trees are cut and the stumps are left in the fields. After 2 or 3 harvesting cycles these tree stumps are removed from the fields and considered low value biomass wastes. This corresponds to depletion on organic matter and of valuable minerals related to soil fertility. The use of these biomass wastes in thermochemical conversion processes like gasification or combustion may be a valuable alternative solution as it allows taking profit of these wastes energetic content. The solid by-products obtained by thermal conversion (ashes) may be incorporated in soils to return the valuable minerals and to ensure a good forest management system. Stumps removed from eucalyptus stands were used in combustion trials to improve the burning conditions and in gasification tests with different experimental conditions to obtain syngas suitable to be used in furnaces (chemical recover) of pulp industries. Stumps combustion and gasification processes were compared in terms of stumps energetic valorisation, gaseous emissions and gasification gas utilisation.
- «
- 1 (current)
- 2
- 3
- »