Repository logo
 

Search Results

Now showing 1 - 5 of 5
  • Synthesis of Non-Cubic Nitride Phases of Va-Group Metals (V, Nb, and Ta) from Metal Powders in Stream of NH3 Gas under Concentrated Solar Radiation
    Publication . Shohoji, Nobumitsu; Oliveira, Fernando Almeida Costa; Galindo, José; Rodriguez, Jose; Cañadas, Inmaculada; Fernandes, Jorge Cruz; Rosa, Luís Guerra
    ABSTRACT: Using a high-flux solar furnace, loosely compacted powders of Va-group transition metal (V, Nb, and Ta) were reacted with stream of NH3 gas (uncracked NH3 gas) being heated by concentrated solar beam to a temperature (T) range between 600 and 1000 degrees C. From V, sub-nitride V2N (gamma phase) and hypo-stoichiometric mono-nitride VN possessing fcc (face-centered cubic) crystal lattice structure (delta phase) were synthesized. On the other hand, in the reaction product from Nb and Ta, hexagonal mono-nitride phase with N/M atom ratio close to 1 (epsilon phase) was detected. The reaction duration was normalized to be 60 min. In a conventional industrial or laboratory electric furnace, the synthesis of mono-nitride phase with high degree of crystallinity that yield sharp XRD peaks for Va-group metal might take a quite long duration even at T exceeding 1000 degrees C. In contrast, mono-nitride phase MN of Va-group metal was synthesized for a relatively short duration of 60 min at T lower than 1000 degrees C being co-existed with lower nitride phases.
  • Influence of linear flow velocity of uncracked ammonia (NH3) gas on formation of higher nitrides, 𝛅-MoN and 𝛆-Fe2N, under concentrated solar irradiation in the SF40 solar furnace at PSA
    Publication . Shohoji, Nobumitsu; Oliveira, Fernando Almeida Costa; Galindo, José; Fernandes, Jorge Cruz; Rodríguez, José; Cañadas, Inmaculada; Rosa, Luís Guerra
    ABSTRACT: Nitriding experiments for powder specimens of Mo and Fe were carried out using a solar furnace SF40 at PSA (Plataforma Solar de Almería) in Tabernas (Spain) in uncracked ammonia NH3 gas (NH3 gas with suppressed extent of dissociation by flowing) aiming at determining the range of linear velocity v of NH3 gas flow to yield higher nitride phases, δ-MoN for Mo and ε-Fe2N for Fe. Standard solar exposure duration at a specified reaction temperature T was set to be 60 min over range of v between 1.14 mm·s-1 and 11.4 mm·s-1. By X-ray diffraction (XRD) analysis, presence of δ-MoN was detected besides γ-Mo2N and metallic Mo for Mo powder specimen heated to 900 ºC in NH3 gas flow at v = 1.14 mm·s-1 but XRD peaks identifiable as δ-MoN became indiscernible when v was increased to 11.4 mm·s-1. On the other hand, for Fe powder specimen exposed to NH3 gas flow at v = 1.14 mm·s-1 at T = 500 ºC, remnant metallic α-Fe was detectable by XRD at the down-stream side of the specimen holder but no metallic α-Fe was detected at the up-stream side of the specimen holder suggesting that chemical activity a(N) of N atom in uncracked NH3 gas tended to decrease along the NH3 gas flow path on going from the up-stream side to the down-stream side.
  • Low-temperature nitriding of VA-group metal powders (V,Nb,Ta) in flowing NH3 gas under heating with concentrated solar beam at PSA
    Publication . Fernandes, Jorge Cruz; Oliveira, Fernando Almeida Costa; Rosa, Luís Guerra; Rodríguez, José; Cañadas, Inmaculada; Magalhães, Teresa; Shohoji, Nobumitsu
    Over the last two decades, we have been using concentrated solar beam as the reaction heat source for synthesizing carbides and nitrides of d-group transition elements in view of usage of ecological renewable energy source in place of conventional heat sources using electricity or gas. In recent works [1,2] nitriding of VIa-group metals (Cr, Mo, W) and Fe in stream of NH3 gas with suppressed extent of dissociation (uncracked NH3) was attempted under heating with concentrated solar beam. It was demonstrated that mono-nitride -MoN of Mo and sub-nitride -Fe2N of Fe that are known to be impossible to synthesize in N2 gas environment even at elevated pressure p(N2) were successfully synthesized by the reactions of these metals in stream of NH3 gas under heating with concentrated solar beam up to 800ºC. In the present work, nitriding of Va-group metals (V, Nb and Ta) was attempted in stream of NH3 gas under irradiation of concentrated solar beam. By up to 90 min heating in uncracked NH3 under concentrated solar beam up to 800ºC, reaction products were identified by X-ray diffraction (XRD) analysis to be consisted of mono-nitride MN co-existent with sub-nitride M2N.
  • Synthesizing higher nitride of molybdenum (Mo) and iron (Fe) in ammonia (NH3) gas stream under irradiation of concentrated solar beam in a solar furnace
    Publication . Shohoji, Nobumitsu; Oliveira, Fernando Almeida Costa; Fernandes, Jorge Cruz; Rosa, Luís Guerra; Rodriguez, Jose; Cañadas, Inmaculada; Ramos, Carlos; Magalhães, Teresa; Cestari, F.
    Flowing gaseous ammonia NH3 with suppressed extent of dissociation (un-cracked NH3) is acknowledged to function as a powerful nitriding medium to realize formation of metal nitride MNx with considerably high N/M ratio x that cannot be achieved through reaction of M with N2 gas. For example, mono-nitride d-MoN of Mo and e-FeNx phase of Fe with x = 0.33 ˜ 0.50 (i. e. hypo-stoichiometric sub-nitride e-Fe2N) were reported to be difficult to prepare in N2 gas environment even at elevated pressure but might be synthesized in flowing NH3 gas at normal pressure when reaction temperature and NH3 gas flow rate were set adequately. In the present work, nitriding experiments for Mo and Fe were carried out in flowing NH3 gas under irradiation with concentrated solar beam. The acquired experimental evidences demonstrated that temperature range for formation of d-MoN was somewhat extended in flowing NH3 gas under heating with concentrated solar beam compared with that under heating in conventional laboratory or industrial electric furnace. On the other hand, no such merit of extending temperature range for formation of e-Fe2N in flowing NH3 gas was detected in the present work under heating with concentrated solar beam.
  • Low-temperature nitriding of VA-group metal powders (V,Nb,Ta) in flowing NH3 gas under heating with concentrated solar beam at PSA
    Publication . Fernandes, Jorge Cruz; Oliveira, Fernando Almeida Costa; Rosa, Luís Guerra; Rodríguez, José; Cañadas, Inmaculada; Magalhães, Teresa; Shohoji, Nobumitsu
    Over the last two decades, we have been using concentrated solar beam as the reaction heat source for synthesizing carbides and nitrides of d-group transition elements in view of usage of ecological renewable energy source in place of conventional heat sources using electricity or gas. In recent works [1,2] nitriding of VIa-group metals (Cr, Mo, W) and Fe in stream of NH3 gas with suppressed extent of dissociation (uncracked NH3) was attempted under heating with concentrated solar beam. It was demonstrated that mono-nitride -MoN of Mo and sub-nitride -Fe2N of Fe that are known to be impossible to synthesize in N2 gas environment even at elevated pressure p(N2) were successfully synthesized by the reactions of these metals in stream of NH3 gas under heating with concentrated solar beam up to 800ºC. In the present work, nitriding of Va-group metals (V, Nb and Ta) was attempted in stream of NH3 gas under irradiation of concentrated solar beam. By up to 90 min heating in uncracked NH3 under concentrated solar beam up to 800ºC, reaction products were identified by X-ray diffraction (XRD) analysis to be consisted of mono-nitride MN co-existent with sub-nitride M2N.