Loading...
2 results
Search Results
Now showing 1 - 2 of 2
- Lignin syngas bioconversion by Butyribacterium methylotrophicum: advancing towards an integrated biorefineryPublication . Pacheco, Marta; Pinto, Filomena; Ortigueira, Joana; Silva, Carla; Gírio, FranciscoABSTRACT: Hybrid bio-thermochemical based technologies have the potential to ensure greater feedstock flexibility for the production of bioenergy and bioproducts. This study focused on the bioconversion of syngas produced from low grade technical lignin to C-2-/C-4-carboxylic acids by Butyribacterium methylotrophicum. The effects of pH, medium supplementation and the use of crude syngas were analyzed. At pH 6.0, B. methylotrophicum consumed CO, CO2 and H-2 simultaneously up to 87 mol% of carbon fixation, and the supplementation of the medium with acetate increased the production of butyrate by 6.3 times. In long-term bioreactor experiments, B. methylotrophicum produced 38.3 and 51.1 mM acetic acid and 0.7 and 2.0 mM butyric acid from synthetic and lignin syngas, respectively. Carbon fixation reached 83 and 88 mol%, respectively. The lignin syngas conversion rate decreased from 13.3 to 0.9 NmL/h throughout the assay. The appearance of a grayish pellet and cell aggregates after approximately 220 h was indicative of tar deposition. Nevertheless, the stressed cells remained metabolically active and maintained acetate and butyrate production from lignin syngas. The challenge that impurities represent in the bioconversion of crude syngas has a direct impact on syngas cleaning requirements and operation costs, supporting the pursuit for more robust and versatile acetogens.
- Effects of Lignin Gasification Impurities on the Growth and Product Distribution of Butyribacterium methylotrophicum during Syngas FermentationPublication . Pacheco, Marta; Pinto, Filomena; Brunsvik, Anders; Andre, Rui N.; Marques, Paula; Mata, Ricardo; Ortigueira, Joana; Gírio, Francisco; Moura, PatríciaABSTRACT: This work evaluated the effects of condensable syngas impurities on the cell viability and product distribution of Butyribacterium methylotrophicum in syngas fermentation. The condensates were collected during the gasification of two technical lignins derived from wheat straw (WST) and softwood (SW) at different temperatures and in the presence or absence of catalysts. The cleanest syngas with 169 and 3020 ppmv of H2S and NH3, respectively, was obtained at 800 degrees C using dolomite as catalyst. Pyridines were the prevalent compounds in most condensates and the highest variety of aromatics with cyanide substituents were originated during WST lignin gasification at 800 degrees C without catalyst. In contrast with SW lignin-based condensates, the fermentation media supplemented with WST lignin-derived condensates at 1:100 vol. only supported residual growth of B. methylotrophicum. By decreasing the condensate concentration in the medium, growth inhibition ceased and a trend toward butyrate production over acetate was observed. The highest butyrate-to-acetate ratio of 1.3 was obtained by supplementing the fermentation media at 1:1000 vol. with the condensate derived from the WST lignin, which was gasified at 800 degrees C in the presence of olivine. B. methylotrophicum was able to adapt and resist the impurities of the crude syngas and altered its metabolism to produce additional butyrate.