Logo do repositório
 
A carregar...
Foto do perfil
Pessoa

Pérez Guerra, Nelson

Resultados da pesquisa

A mostrar 1 - 1 de 1
  • Enhancing the Biorefinery of Chestnut Burrs, Part II: Influence of Pretreatment with Choline Chloride–Urea-Diluted Deep Eutectic Solvent on Enzymatic Hydrolysis
    Publication . Costa Trigo, Iván; Moran, Guadalupe; Pérez Guerra, Nelson; Oliveira, Ricardo; Domínguez, José Manuel
    ABSTRACT: Agro-industrial chestnut waste derived from chestnut processing is usually discharged without further use. However, these residues are attractive due to their high-value composition, rich in sugars and lignin. Among these residues, chestnut burrs (CB) represent a promising feedstock for biorefinery applications aimed at maximizing the valorization of their main constituents. In this study, we propose an environmentally friendly approach based on deep eutectic solvents (DES) formed by choline chloride and urea (ChCl/U) (1:2, mol/mol) for the selective deconstruction of lignocellulosic architecture, followed by enzymatic hydrolysis to release second-generation (2G) fermentable sugars. Pretreatments were applied to raw CB, washed CB (W-CB), and the obtained solid fraction after prehydrolysis (PreH). Structural and morphological modifications, as well as crystallinity induced by DES pretreatment, were characterized using attenuated total reflectance Fourier-transform infrared spectroscopy (ATR-FTIR), field emission scanning electron microscopy (FE-SEM), and X-ray diffraction (XRD). Remarkable results in terms of effectiveness and environmental friendliness on saccharification yields were achieved for PreH subjected to DES treatment for 8 h, reaching approximately 60% glucan and 74% xylan conversion under the lower enzyme loading (23 FPU/g) and liquid-to-solid ratio (LSR) of 20:1 studied. This performance significantly reduces DES pretreatment time from 16 h to 8 h at mild conditions (100 degrees C), lowers the LSR for enzymatic hydrolysis from 30:1 to 20:1, and decreases enzyme loading from 63.5 FPU/g to 23 FPU/g, therefore improving process efficiency and sustainability.