Loading...
23 results
Search Results
Now showing 1 - 10 of 23
- The effects of tantalum addition on the microtexture and mechanical behaviour of tungsten for ITER applicationsPublication . Tejado, Elena; Carvalho, Patricia Almeida; Munoz, A.; Dias, Marta; Correia, J.B.; Mardolcar, U. V.; Pastor, Jose YgnacioTungsten (W) and its alloys are very promising materials for producing plasma-facing components (PFCs) in the fusion power reactors of the near future, even as a structural part in them. However, whereas the properties of pure tungsten are suitable for a PFC, its structural applications are still limited due to its low toughness, ductile to brittle transition temperature and recrystallization behaviour. Therefore, many efforts have been made to improve its performance by alloying tungsten with other elements. Hence, in this investigation, the thermo-mechanical performance of two new tungsten-tantalum materials has been evaluated. Materials with W–5wt.%Ta and W–15wt.%Ta were processed by mechanical alloying (MA) and later consolidation by hot isostatic pressing (HIP), with distinct settings for each composition. Thus, it was possible to determine the relationship between the microstructure and the addition of Ta with the macroscopic mechanical properties. These were measured by means of hardness, flexural strength and fracture toughness, in the temperature range of 300–1473 K. The microstructure and the fracture surfaces features of the tested materials were analysed by Field Emission Scanning Electron Microscopy (FESEM).
- Nanodiamond dispersions in nanostructured metalsPublication . Nunes, D.; Correia, J.B.; Carvalho, Patricia Almeida
- Gibbs-Thomson effect as driving force for liquid film migration: Converting metallic into ceramic fibers through intrinsic oxidationPublication . Dias, Marta; Rosinski, M.; Rodrigues, P. C. R.; Correia, J.B.; Carvalho, Patricia AlmeidaABSTRACT: Liquid film migration is of great practical importance in materials engineering. The phenomenon has been shown to depend on thermal gradients and coherency strain, but no single driving mechanism seems capable of justifying the whole array of experimental observations. On the other hand, the inevitable capillarity effects are often disregarded due to the unknown 3-dimensional geometry of the system. Here, we present evidence of liquid film migration governed primarily by capillarity through a microstructural setup of cylindrical interfaces that allows clear interpretation and modeling. The experiments rely on the strong oxygen-gettering ability of tantalum fibers dispersed in a tungsten matrix and on field-enhanced diffusivity provided by pulse plasma compaction. Tantalum scavenges the residual oxygen present in the W powder and, as a result, oxide films grow around the fibers. These oxide tubes, in liquid state during sintering, migrate toward the fiber axis and eventually become oxide rods surrounded by metallic Ta. The process is driven by the Gibbs-Thomson effect that generates the required composition gradient across the liquid film. An analytical description of the film evolution is implemented by combining the incoming O flux with capillarity-driven migration. Possible contributions from other mechanisms are examined and the relevance of the Gibbs-Thomson effect to the general phenomenon of liquid film migration is established.
- Tungsten microstructural changes induced by ISTTOK plasma dischargesPublication . Mateus, R.; Carvalho, Patricia Almeida; Correia, J.B.; Nunes, D.; Gomes, R. B.; Duarte, P.; Fernandes, H.; Silva, C.; Alves, E.
- Multiscale Copper-uDiamond Nanostructured CompositesPublication . Nunes, D.; Livramento, Vanessa; Fernandes, H.; Silva, C.; Shohoji, Nobumitsu; Correia, J.B.; Carvalho, Patricia AlmeidaNanostructured copper-diamond composites can be tailored for thermal management applications at high temperature. A novel approach based on multiscale diamond dispersions is proposed for the production of this type of materials: a Cu-nDiamond composite produced by high-energy milling is used as a nanostructured matrix for further dispersion of micrometer sized diamond. The former offers strength and microstructural thermal stability while the latter provides high thermal conductivity. A series of Cu-nDiamond mixtures have been milled to define the minimum nanodiamond fraction suitable for matrix refinement and thermal stabilization. A refined matrix with homogenously dispersed nanoparticles could be obtained with 4 at.% nanodiamond for posterior mixture with ƒÝDiamond and subsequent consolidation. In order to define optimal processing parameters, consolidation by hot extrusion has been carried out for a Cu-nDiamond composite and, in parallel, for a mixture of pure copper and ÝDiamond. The materials produced were characterized by X-ray diffraction, scanning and transmission electron microscopy and microhardness measurements.
- Elemental interdiffusion in W-Ta composites developed for fusion applicationsPublication . Mateus, R.; Dias, Marta; Livramento, Vanessa; Nunes, D.; Almeida Carvalho, Patricia; Hanada, K.; Correia, J.B.Tungsten (W) was select for an extensive use in nuclear fusion devices due to its low neutron activation, high melting point and sputtering threshold as well as low hydrogen inventory. Nevertheless, W is brittle at low and moderate temperatures, which results in abnormal thermal stress, component fracture and extra erosion under reactor operation due to inherent thermal cycling events. An attractive way to solve these problems involves the addition of other refractory metals in the W matrix and tantalum (Ta) is a natural candidate. It has a high ductility, toughness and radiation resistance relative to those of W and transmutes to W by high-energy neutron irradiation. Recently, IST proposed the production of W-Ta composite by mechanical synthesis.
- Consolidation of W–Ta composites: hot isostatic pressing and spark and pulse plasma sinteringPublication . Dias, Marta; Guerreiro, F.; Correia, J.B.; Galatanu, Andrei; Rosinski, M.; Monge, M. A.; Munoz, A.; Alves, E.; Almeida Carvalho, PatriciaComposites consisting of tantalum fiber/powder dispersed in a nanostructured W matrix have been consolidated by spark and pulse plasma sintering as well as by hot isostatic pressing. The microstructural observations revealed that the tungsten–tantalum fiber composites consolidated by hot isostatic pressing and pulse plasma sintering presented a continuous layer of Ta2O5 phase at the W/Ta interfaces, while the samples consolidated by spark plasma sintering evidenced a Ta + Ta2O5 eutectic mixture due to the higher temperature of this consolidation process. Similar results have been obtained for the tungsten–tantalum powder composites. A (W, Ta) solid solution was detected around the prior nanostructured W particles in tungsten–tantalum powder composites consolidated by spark and pulse plasma sintering. Higher densifications were obtained for composites consolidated by hot isostatic pressing and pulse plasma sintering.
- Nickel–carbon nanocomposites: Synthesis, structural changes and strengthening mechanismsPublication . Nunes, D.; Vilarigues, M.; Correia, J.B.; Carvalho, Patricia AlmeidaThe present work investigates Ni–nanodiamond and Ni–graphite composites produced by mechanical synthesis and subsequent heat treatments. Processing of nickel–carbon nanocomposites by this powder metallurgy route poses specific challenges, as carbon phases are prone to carbide conversion and amorphization. The processing window for carbide prevention has been established through X-ray diffraction by a systematic variation of the milling parameters. Transmission electron microscopy confirmed the absence of carbide and showed homogeneous particle distributions, as well as intimate bonding between the metallic matrix and the carbon phases. Ring diffraction patterns of chemically extracted carbon phases demonstrated that milled nanodiamond preserved crystallinity, while an essentially amorphous nature could be inferred for milled graphite. Raman spectra confirmed that nanodiamond particles remained largely unaffected by mechanical synthesis, whereas the bands of milled graphite were significantly changed into the typical amorphous carbon fingerprint. The results on the annealed nanocomposites showed that milling with Ni accelerated graphitization of the carbon phases during heat treatments at 973 and 1073 K in both composites. At the finer scales, the nanocomposites exhibited a remarkable microhardness enhancement (∼70%) compared with pure nanostructured nickel. The Hall–Petch relation and the Orowan–Ashby equation are used to discuss strengthening mechanisms and the load transfer ability to the reinforcing particles.
- Blistering of W–Ta composites at different irradiation energiesPublication . Mateus, R.; Dias, Marta; Lopes, J.; Rocha, J.; Catarino, N.; Duarte, P.; Gomes, R. B.; Silva, C.; Fernandes, H.; Livramento, Vanessa; Carvalho, Patricia Almeida; Alves, E.; Hanada, K.; Correia, J.B.Pure tungsten and tantalum plates and tungsten–tantalum composites produced via mechanical alloying and spark plasma sintering were bombarded with He+ and D+ energetic ion beams and deuterium plasmas. The aim of this experiment is to study the effects caused by individual helium and deuterium exposures and to evidence that the modifications induced in the composites at different irradiation energies could be followed by irradiating the pristine constituent elements under the same experimental conditions, which is relevant considering the development of tailored composites for fusion applications. Higher D retentions, especially in tungsten, and superficial blistering are observed in both components after helium exposure. The blistering is magnified in the tantalum phase of composites due to its higher ductility and to water vapour production under deuterium irradiation. At lower irradiation energies the induced effects are minor. After plasma exposure, the presence of tantalum does not increase the D content in the composites.
- Microstructural characterization of the ODS Eurofer 97 EU-batchPublication . Mateus, R.; Carvalho, Patricia Almeida; Nunes, D.; Alves, L. C.; Franco, N.; Correia, J.B.; Alves, E.Four as-processed forms (Plate 16, Plate 6, Rod 20 and Rod 12.5) of the ODS Eurofer 97 EU-batch produced under different thermomechanical conditions have been investigated by scanning nuclear microprobe, scanning and transmission electron microscopy, energy dispersive X-ray spectroscopy, electron backscattered diffraction, hightemperature X-ray diffraction and microhardness measurements. The materials presented a ferritic microstructure with a homogeneous distribution of Y. The thicker plate presented a fine carbide dispersion while the other forms showed carbide morphologies corresponding to pseudo-pearlitic and pseudo-bainitic transformations with wellmatched hardness values. Hot rolling induced crystallographic textures of the {101}<101> type, rotary swaging resulted in a complex texture, and extrusion produced a strong <101> fiber texture. X-ray diffraction experiments at high temperature showed that at a cooling rate of 5 ºC/min the complete austenite-to-ferrite transformation occurs between 760 and 750 ºC compromising the material quenchability.
- «
- 1 (current)
- 2
- 3
- »