Repository logo
 
Loading...
Project Logo
Research Project

Center for Nuclear Sciences and Technologies

Authors

Publications

In-Depth Inhomogeneities in CIGS Solar Cells: Identifying Regions for Performance Limitations by PIXE and EBS
Publication . Corregidor, V.; Barreiros, M. Alexandra; Salomé, P.M.P.; Alves, L. C.
ABSTRACT: When considering materials to be used as active layers in solar cells, an important required parameter is the proper knowledge of their elemental composition. It should be heavily controlled during growth in order to obtain the desired band gap and to decrease the recombination defects and then increase the solar cell electrical performance. Ion beam analytical (IBA) techniques and, in particular, particle-induced X-ray emission (PIXE) and elastic backscattering spectrometry (EBS) are quite suitable to determine the thickness and composition of such active layers. Furthermore, if these techniques are performed using a nuclear microprobe, lateral and in-depth inhomogeneities can be clearly observed from 2D maps. In many cases, composition variations can be detected from the classical 2D maps obtained from the PIXE spectra. In this work, it is shown how the in-depth variations can also be studied when considering 2D maps reconstructed from the EBS spectra. Such variations are derived from processing conditions and can be related to (i) composition, (ii) thickness, (iii) roughness, and (iv) other nontrivial issues. Examples obtained on Cu(In,Ga)Se-2-based cells are presented and discussed. Furthermore, the combination of IBA techniques such as PIXE and EBS is shown to be a competitive and alternative method to the more used and established techniques such as X-ray fluorescence for checking the average composition of the solar cell active layers or secondary ion mass spectroscopy for determination of the elemental depth profile.
Environmental Stable and Radioactive Isotopes in the Assessment of Thermomineral Waters in Lisbon Region (Portugal): Contributions for a Conceptual Model
Publication . Marrero Diaz, Rayco; Carvalho, M.R.; Carreira, Paula M.
ABSTRACT: The existence of thermomineral waters in the Lisbon region (western Portugal), has been known for centuries. Several authors have investigated the characteristics of these thermomineral waters, but their conceptual model (recharge zone, processes controlling the origin and chemical evolution, depth of circulation, etc.) remains unknown. This work highlights the advantages of assessing the conceptual model in urban coastal areas, where different saline sources coexist, combining chemical analyses with environmental isotopes and geochemical modeling. The final physicochemical composition of thermomineral waters seems to be mainly controlled by water-rock interaction processes and different mixing degrees between HCO3-Ca regional groundwaters, cold dilute shallow groundwaters and highly salinized fluid (brackish or brine or non-recent seawater) probably trapped at depth. Based on these results, neither the contribution of polluted water nor the leaching of evaporite rocks seems to be the main salinization factor of the warmer and saline waters. A positive correlation exists between the lowest radiocarbon activities (average apparent ages similar to 6 ka BP) and highest water temperature and salinity (up to 39 degrees C and 6.3 g/L), suggesting progressive salinization and deeper circulation (up to 1200 m depth) into the hosting formations, where mixing with trapped salinized fluids probably took place, as confirmed by geochemical modeling. Finally, very favorable geological conditions in the Estoril region allow for fast rising and the occurrence of these thermomineral waters at relatively shallow depths.

Organizational Units

Description

Keywords

Contributors

Funders

Funding agency

Fundação para a Ciência e a Tecnologia

Funding programme

6817 - DCRRNI ID

Funding Award Number

UIDB/04349/2020

ID