Loading...
Research Project
Institute for Plasmas and Nuclear Fusion
Funder
Authors
Publications
Improvement of Mechanical Properties with Non-Equimolar CrNbTaVW High Entropy Alloy
Publication . Antão, Francisco; Martins, Ricardo; Correia, J.B.; Silva, R.C. da; Gonçalves, António Pereira; Tejado, Elena; Pastor, Jose Ygnacio; Alves, E.; Dias, Marta
ABSTRACT: CrNbTaVWx with (x = 1 and 1.7) high entropy alloys have been devised for thermal barriers between the plasma-facing tungsten tiles and the copper-based heat sink in the first wall of fusion nuclear reactors. These novel materials were prepared by ball milling and consolidated by Upgrade Field Assisted Sintering Technology at 1873 K under an applied pressure of 90 MPa for 10 min. In this work, the structural and mechanical properties of these materials were evaluated. Consolidated samples presented a major phase with a bcc-type structure with lattice parameter value of 0.316 nm for CrNbTaVW and CrNbTaVW1.7 compositions. Moreover, observation of the microstructures evidences also two minor phases: Ta-Nb-Cr and Ta-V rich (in which carbon is detected). Despite the similarity in the structural properties of these two alloys, their mechanical properties are distinct. The flexural stress for the sample with higher amount of W (CrNbTaVW1.7) is higher by 50% in the 298-873 K range, with an increased strain to fracture, which can be associated with reduced brittleness caused by the additional W incorporation.
Damage threshold of CuCrFeTiV high entropy alloys for nuclear fusion reactors
Publication . Dias, Marta; Magalhães, S.; Antão, Francisco; Silva, R.C. da; Gonçalves, António Pereira; Carvalho, Patricia Almeida; Correia, J.B.; Galatanu, Andrei; Alves, E.
ABSTRACT: A CuCrFeTiV high entropy alloy was prepared and irradiated with swift heavy ions in order to check its adequacy for use as a thermal barrier in future nuclear fusion reactors. The alloy was prepared from the elemental powders by ball milling, followed by consolidation by spark plasma sintering at 1178 K and 65 MPa. The samples were then irradiated at room temperature with 300 keV Ar+ ions with fluences in the 3 x 1015 to 3 x 1018 Ar+/cm2 range to mimic neutron-induced damage accumulation during a duty cycle of a fusion reactor. Structural changes were investigated by X-ray diffraction, and scanning electron microscopy and scanning transmission electron microscopy, both coupled with X-ray energy dispersive spectroscopy. Surface irradiation damage was detected for high fluences (3 x 1018 Ar+/cm2) with formation of blisters of up to 1 mu m in diameter. Cross-sectional scanning transmission electron microscopy showed the presence of intergranular cavities only in the sample irradiated with 3 x 1018 Ar+/cm2, while all irradiation experiments produced intragranular nanometric-sized bubbles with increased density for higher Ar+ fluence. The Williamson-Hall method revealed a decrease in the average crystallite size and an increase in residual strain with increasing fluence, consistent with the formation of Ar+ bubbles at the irradiated surface.
Irradiation damage on CrNbTaVWx high entropy alloys
Publication . Martins, Ricardo; Correia, J.B.; Czarkowski, P.; Miklaszewski, R.; Malaquias, A.; Mateus, R.
ABSTRACT: CrNbTaVWx high-entropy alloys have been developed for plasma facing components to be applied in nuclear fusion reactors. The CrNbTaVWx (x = 1 and 1.7) compositions were prepared by ball milling and consolidated at 1600 degrees C under 90 MPa. To study the irradiation resistance of these materials, deuterium plasmas were used to irradiate the samples in the PF-1000U facility with 1 and 3 discharges. Structural changes before and after irradiation were analyzed by scanning electron microscopy coupled with energy dispersive X-ray spectroscopy. Nuclear reaction analysis was carried out with 1000 and 2300 keV 3He+ ion beams to evaluate the profile and amount of retained deuterium on the irradiated samples. After irradiation, the sample with higher W content revealed swelling and melting for all discharges, while in the case of CrNbTaVW only blisters were observed. The deuterium retention was higher for CrNbTaVW1.7 when compared with CrNbTaVW for 3 discharges applied.
Behavior of Cu-Y2O3 and CuCrZr-Y2O3 composites before and after irradiation
Publication . Martins, Ricardo; Antão, Francisco; Correia, J.B.; Tejado, Elena; Pastor, Jose Ygnacio; Galatanu, Andrei; Almeida Carvalho, Patricia; Alves, E.; Dias, Marta
ABSTRACT: The Cu-Y2O3 and CuCrZr-Y2O3 materials have been devised as thermal barriers in nuclear fusion reactors. It is expected that in the nuclear environments, the materials should be working on extreme conditions of irradiation. In this work the Cu-Y2O3 and CuCrZr-Y2O3 were prepared and then irradiated in order to understand the surface irradiation resistance of the material. The composites were prepared in a glove box and consolidated with spark plasma sintering. The microstructures revealed regions of Y2O3 dispersion and Y2O3 agglomerates both in the Cu matrix and in the CuCrZr. The irradiated samples did not show any surface modification indicating that the materials seem to be irradiation resistant in the present situation. The thermal conductivity values for all the samples measured are lower than pure Cu and higher than pure W, however are higher than those expected, and therefore, the application of these materials as thermal barriers is compromised.
Simulation and study of the milling parameters on CuFeTaTiW multicomponent alloy
Publication . Martins, Ricardo; Gonçalves, António Pereira; Correia, J.B.; Galatanu, Andrei; Alves, E.; Dias, Marta
ABSTRACT: The CuFeTaTiW multicomponent alloy has been devised as an interlayer thermal barrier in nuclear fusion re-actors. In order to predict the phase constitution of this alloy, two different lines of work were performed: (a) simulation using Molecular dynamics and Monte Carlo and (b) study of the influence of mechanical alloying parameters on the structures formed. The simulation results show that the most stable structure is achieved starting from a bcc type-structure and using Monte Carlo simulation. In fact, in these conditions the separation into two bcc phases Fe-Ta-W and Cu-Ti is predicted at room temperature. However, the experimental preparation of the materials with mechanical alloying revealed that from 2 h of milling a single bcc phase is formed. The structure of the milled powder was not much influenced by the amount of the process control agent and the by the size of the W starting particles, but generally there was formation of Ta2H from the reaction between the powders and the process control agent.
Organizational Units
Description
Keywords
Contributors
Funders
Funding agency
Fundação para a Ciência e a Tecnologia
Funding programme
6817 - DCRRNI ID
Funding Award Number
UIDB/50010/2020