Repository logo
 
Publication

A Machine Learning Model for Procurement of Secondary Reserve Capacity in Power Systems with Significant vRES Penetrations

datacite.subject.fosEngenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e Informática
datacite.subject.sdg07:Energias Renováveis e Acessíveis
datacite.subject.sdg11:Cidades e Comunidades Sustentáveis
datacite.subject.sdg12:Produção e Consumo Sustentáveis
datacite.subject.sdg13:Ação Climática
dc.contributor.authordos Santos, Joao
dc.contributor.authorAlgarvio, Hugo
dc.date.accessioned2025-04-16T15:21:31Z
dc.date.available2025-04-16T15:21:31Z
dc.date.issued2025-03
dc.description.abstractABSTRACT: The growing investment in variable renewable energy sources is changing how electricity markets operate. In Europe, players rely on forecasts to participate in day-ahead markets closing between 12 and 37 h ahead of real-time operation. Usually, transmission system operators use a symmetrical procurement of up and down secondary power reserves based on the expected demand. This work uses machine learning techniques that dynamically compute it using the day-ahead programmed and expected dispatches of variable renewable energy sources, demand, and other technologies. Specifically, the methodology incorporates neural networks, such as Long Short-Term Memory (LSTM) or Convolutional neural network (CNN) models, to improve forecasting accuracy by capturing temporal dependencies and nonlinear patterns in the data. This study uses operational open data from the Spanish operator from 2014 to 2023 for training. Benchmark and test data are from the year 2024. Different machine learning architectures have been tested, but a Fully Connected Neural Network (FCNN) has the best results. The proposed methodology improves the usage of the up and down secondary reserved power by almost 22% and 11%, respectively.eng
dc.identifier.citationdos Santos, J., & Algarvio, H. (2025). A Machine Learning Model for Procurement of Secondary Reserve Capacity in Power Systems with Significant vRES Penetrations. In: Energies, vol. 18(6), article 1467. https://doi.org/10.3390/en18061467
dc.identifier.doi10.3390/en18061467
dc.identifier.issn1996-1073
dc.identifier.urihttp://hdl.handle.net/10400.9/5650
dc.language.isoeng
dc.peerreviewedyes
dc.publisherMDPI
dc.relationTools for the Design and modelling of new markets and negotiation mechanisms for a ~100% Renewable European Power Systems
dc.relation.hasversionhttps://www.mdpi.com/1996-1073/18/6/1467
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subjectRenewable energy sources
dc.subjectEnergy markets
dc.subjectVariable renewable energy sources
dc.subjectForecast
dc.subjectMachine learning
dc.titleA Machine Learning Model for Procurement of Secondary Reserve Capacity in Power Systems with Significant vRES Penetrationseng
dc.typejournal article
dspace.entity.typePublication
oaire.awardTitleTools for the Design and modelling of new markets and negotiation mechanisms for a ~100% Renewable European Power Systems
oaire.awardURIinfo:eu-repo/grantAgreement/EC/H2020/864276/EU
oaire.citation.issue6
oaire.citation.titleEnergies
oaire.citation.volume18
oaire.fundingStreamH2020
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85
person.familyNamedos Santos
person.familyNameAlgarvio
person.givenNameJoao
person.givenNameHugo
person.identifier.orcid0009-0007-5995-8060
person.identifier.orcid0000-0002-4129-838X
project.funder.identifierhttp://doi.org/10.13039/501100008530
project.funder.nameEuropean Commission
relation.isAuthorOfPublication44c41e2c-628c-4191-8cb6-85f50e174a81
relation.isAuthorOfPublication7e11aad2-1f16-4d13-8c22-f19be2205d04
relation.isAuthorOfPublication.latestForDiscovery44c41e2c-628c-4191-8cb6-85f50e174a81
relation.isProjectOfPublication7d7e6f9b-bf23-4adc-8f93-2061ef327e26
relation.isProjectOfPublication.latestForDiscovery7d7e6f9b-bf23-4adc-8f93-2061ef327e26

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Energies_18_1467.pdf
Size:
20.39 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
4.03 KB
Format:
Item-specific license agreed upon to submission
Description: