Repository logo
 
Loading...
Thumbnail Image
Publication

Enhancing photocatalytic properties of rutile TiO2 by codoping with N and metals e Ab initio study

Use this identifier to reference this record.
Name:Description:Size:Format: 
InternationalJournalHydrogenEnergy_Vol.40_9696.pdf196.34 KBAdobe PDF Download

Advisor(s)

Abstract(s)

Substitutional N to O and M to Ti (M = Pt, V, Sb) codoped rutile TiO2 was investigated using density functional theory (DFT) based calculations with both standard and hybrid exchange-correlation functionals. The band gaps calculated using generalized gradient approximation (GGA) exhibited narrowing compared to the pure rutile TiO2 in all the investigated cases. In contrast, the results obtained with hybrid exchange-correlation functional showed that there was no band gap narrowing, but doping induced localized states within the band gap just above the valence band, as well as below the conduction band for Pt doped TiO2. The presence of broad intermediate states (IS) in the band gap could enhance visible light absorption through a two step optical transition from the valence to the conduction band via the IS and at the same time lower recombination of the photogenerated charges.

Description

Keywords

Hydrogen production Photocatalysis Solar hydrogen Titanium dioxide

Pedagogical Context

Citation

Belosevic-Cavor, J.; Batalovic, K.; Koteski, V.; Radakovic, J.; Rangel, C.M. - Enhancing photocatalytic properties of rutile TiO2 by codoping with N and metals e Ab initio study. In: International Journal of Hydrogen Energy, 2015, Vol. 40, p. 9696-9703

Research Projects

Organizational Units

Journal Issue

Publisher

Elsevier

CC License

Altmetrics