Repository logo
 
Publication

Computation of Hydrodynamic Coefficients for Submerged Spheres: A Comprehensive Analysis

datacite.subject.fosCiências Naturais::Matemáticas
datacite.subject.fosEngenharia e Tecnologia::Outras Engenharias e Tecnologias
dc.contributor.authorJustino, Paulo Alexandre
dc.date.accessioned2025-09-30T13:29:44Z
dc.date.available2025-09-30T13:29:44Z
dc.date.issued2025-03
dc.description.abstractABSTRACT: Hydrodynamic coefficients are essential parameters in fluid mechanics that serve to quantify the complex interaction between a submerged body and the surrounding fluid . Specifically in the context of submerged spheres, these coefficients provide a measure of the forces and moments exerted by the fluid on the sphere, or conversely, the resistance the sphere encounters as it moves through the fluid . Understanding and accurately determining these coefficients is paramount for a wide range of applications, including the design and control of underwater vehicles, the analysis of offshore structures, and the prediction of the behavior of marine organisms. The accurate prediction of wave loads on submerged structures also relies heavily on the evaluation of these coefficients. The significance of hydrodynamic coefficients lies in their ability to simplify the complex physics of fluid-structure interaction into manageable parameters. For instance, the added mass coefficient reflects the inertia of the fluid that is accelerated along with the moving sphere, effectively increasing the sphere's apparent mass. This phenomenon is critical in dynamic analyses, as the inertial forces are directly influenced by this added mass. Similarly, the drag coefficient quantifies the resistance force that opposes the sphere's motion, a force primarily attributed to viscous effects and the pressure distribution around the body. In certain flow regimes, particularly involving non-uniform flow fields such as those induced by waves or in the presence of rotation, a lift coefficient may also become relevant, representing a force acting perpendicular to the direction of motion. The accurate determination of these coefficients, which can be linear or nonlinear depending on the complexity of the fluid-structure interaction, is a crucial step in the design and analysis of any system involving submerged spheres. The interaction between a submerged sphere and the surrounding fluid exemplifies a fundamental fluid-structure interaction problem. When a solid object like a sphere is placed in the path of a fluid, the fluid exerts pressure and viscous forces on the sphere's surface, potentially leading to its motion or deformation. Conversely, the presence and motion of the sphere alter the flow field of the fluid. Hydrodynamic coefficients serve as the critical link in understanding this bidirectional influence, allowing engineers and researchers to predict the dynamic response of the sphere to fluid forces and the impact of the sphere's motion on the fluid environment. For example, in the context of underwater explosions, the structural response of a submerged body significantly affects the dynamics of the explosion bubble, highlighting the intricate nature of fluid-structure interaction where hydrodynamic coefficients play a vital role.eng
dc.identifier.citationJustino, P.A. (2025). Computation of Hydrodynamic Coefficients for Submerged Spheres: A Comprehensive Analysis. Report #1/2025. Technical Report, LNEG, Março 2025, 11 pp.
dc.identifier.urihttp://hdl.handle.net/10400.9/6078
dc.language.isoeng
dc.peerreviewedno
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subjectHydrodynamic coefficients
dc.subjectSubmerged spheres
dc.subjectComputational Fluid Dynamics
dc.subjectAnalytical method
dc.subjectNumerical modeling
dc.titleComputation of Hydrodynamic Coefficients for Submerged Spheres: A Comprehensive Analysiseng
dc.typetechnical report
dspace.entity.typePublication
oaire.versionhttp://purl.org/coar/version/c_be7fb7dd8ff6fe43

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Report - Computation of Hydrodynamic Coefficients for Submerged Spheres.pdf
Size:
113.81 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
4.03 KB
Format:
Item-specific license agreed upon to submission
Description: