Repository logo
 
Publication

Enhancing wind power forecast accuracy using the weather research and forecasting numerical model-based features and artificial neuronal networks

dc.contributor.authorCouto, António
dc.contributor.authorEstanqueiro, Ana
dc.date.accessioned2023-02-13T15:15:39Z
dc.date.available2023-02-13T15:15:39Z
dc.date.issued2022-12
dc.description.abstractABSTRACT: Forecasting with accuracy the quantity of energy produced by wind power plants is crucial to enabling its optimal integration into power systems and electricity markets. Despite the remarkable improvements in the wind forecasting systems in recent years, large errors can still be observed, especially for longer time horizons. This work focuses on identifying new numerical weather prediction (NWP)-based features aiming to improve the overall quality of wind power forecasts. The methodology also incorporates a sequential forward feature selection algorithm. This algorithm was designed to select iteratively the meteorological features which minimize the wind forecast errors. The methodology was applied separately to seven wind parks in Portugal with different climate characteristics. The proposed approach allowed a reduction between 13% and 37% in the root mean square errors of wind power forecasts, compared with a baseline scenario. While the meteorological features identified for each wind park showed similarities within regions with analogous wind power generation profiles, each wind park required specific meteorological parameters as input data to obtain the best performance. Thus, the results show to be crucial to select the most relevant features of a specific site to maximize the accuracy of a wind power forecast.pt_PT
dc.description.versioninfo:eu-repo/semantics/publishedVersionpt_PT
dc.identifier.citationCouto, António... [et.al.] - Enhancing wind power forecast accuracy using the weather research and forecasting numerical model-based features and artificial neuronal networks. In: Renewable Energy, 2022, vol. 201, p. 1076-1085pt_PT
dc.identifier.doi10.1016/j.renene.2022.11.022pt_PT
dc.identifier.eissn1879-0682
dc.identifier.issn0960-1481
dc.identifier.urihttp://hdl.handle.net/10400.9/4016
dc.language.isoengpt_PT
dc.peerreviewedyespt_PT
dc.publisherElsevierpt_PT
dc.relationTools for the Design and modelling of new markets and negotiation mechanisms for a ~100% Renewable European Power Systems
dc.relation.publisherversionhttps://doi.org/10.1016/j.renene.2022.11.022pt_PT
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/pt_PT
dc.subjectWind power forecastpt_PT
dc.subjectArtificial neural networkspt_PT
dc.subjectWind power variabilitypt_PT
dc.subjectMeteorological parameterspt_PT
dc.titleEnhancing wind power forecast accuracy using the weather research and forecasting numerical model-based features and artificial neuronal networkspt_PT
dc.typejournal article
dspace.entity.typePublication
oaire.awardTitleTools for the Design and modelling of new markets and negotiation mechanisms for a ~100% Renewable European Power Systems
oaire.awardURIinfo:eu-repo/grantAgreement/EC/H2020/864276/EU
oaire.citation.endPage1085pt_PT
oaire.citation.startPage1076pt_PT
oaire.citation.titleRenewable Energypt_PT
oaire.citation.volume201pt_PT
oaire.fundingStreamH2020
person.familyNameCouto
person.familyNameEstanqueiro
person.givenNameAntónio
person.givenNameAna
person.identifier.ciencia-id2619-80A1-A8AC
person.identifier.ciencia-id7F11-A24D-EE81
person.identifier.orcid0000-0002-7368-8817
person.identifier.orcid0000-0002-0476-2526
person.identifier.ridJ-9752-2012
person.identifier.scopus-author-id19336967700
project.funder.identifierhttp://doi.org/10.13039/501100008530
project.funder.nameEuropean Commission
rcaap.rightsopenAccesspt_PT
rcaap.typearticlept_PT
relation.isAuthorOfPublicationa0c5b011-98c5-49d3-9ac6-ddfb6027f500
relation.isAuthorOfPublication20aa31b3-fa3c-42b7-82a4-e6b91c017f9c
relation.isAuthorOfPublication.latestForDiscoverya0c5b011-98c5-49d3-9ac6-ddfb6027f500
relation.isProjectOfPublication7d7e6f9b-bf23-4adc-8f93-2061ef327e26
relation.isProjectOfPublication.latestForDiscovery7d7e6f9b-bf23-4adc-8f93-2061ef327e26

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
RenewableEnergy_Vol.201_1076-1085.pdf
Size:
1.65 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: