UB - Artigos em revistas internacionais
Permanent URI for this collection
Browse
Browsing UB - Artigos em revistas internacionais by Field of Science and Technology (FOS) "Engenharia e Tecnologia::Engenharia do Ambiente"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- Editorial: The biorefineries and application of green technologies for recovering bioactive compounds from microalgaePublication . Vladic, Jelena; Gouveia, LuisaABSTRACT: Microalgae are attracting growing scientific and industrial interest as a renewable and versatile source of high-value bioactive compounds, including pigments, fatty acids, proteins, and antioxidants. Their rapid growth, ability to adapt to extreme conditions, and rich biochemical composition make them a promising resource for sustainable development across a range of applications. From cosmetics to food supplements, their potential spans multiple industries. Still, the considerable gap between encouraging laboratory research and commercially viable production remains. One of the major challenges lies in developing methods for extracting and preserving these compounds in ways that are both efficient and environmentally responsible.
- Optimizing bacterial nanocellulose production from eucalyptus bark: A circular approach to wastewater management and resource recoveryPublication . Rodrigues, Ana Cristina; Martins, Daniela; Duarte, Maria Salomé; Marques, Susana; Gama, Miguel; Dourado, Fernando; Carvalho, Ricardo; Cavaleiro, AnaABSTRACT: The production cost of bacterial nanocellulose (BNC) is a major limitation to its widespread use. However, this limitation can be addressed by using alternative low-cost substrates and high-yield strains. Agro-industrial wastederived substrates offer a cost-effective and sustainable solution, but their high organic load often requires additional downstream wastewater treatments. Here, we optimized static BNC production using eucalyptus bark hydrolysate (EBH) as a low-cost carbon source and proposed a circular approach for wastewater management. Optimization was performed using response surface methodology - central composite design. The optimized EBH medium yielded a 39.7-fold increase compared to standard medium, with a maximum BNC production of 8.29 f 0.21 g/L. Fermentation wastewater only (WaF) and combined with BNC washing streams (WaW) revealed high levels of organic matter, namely chemical oxygen demand (COD) of 159.0 f 2.0 and 41.1 f 0.3 g/L, and volatile solids (VS) of 99.5 f 0.9 and 26.3 f 0.2 g/L, respectively, requiring treatment before disposal. A sequential anaerobic-aerobic digestion was investigated for wastewater treatment and valorisation. Anaerobic digestion proved to be effective in treating the wastewater: methanization percentages over 87 % were achieved, and methane productions of 486 f 2 and 544 f 30 L/kg VS were obtained from WaF and WaW, respectively. Subsequent aerobic treatment was unsuccessful in further reducing COD levels (approximately 1.5 g/L). Notably, treated wastewater was recycled into the production process up to 45 % without affecting the BNC yield. This study provides valuable insights into the optimization of BNC production from lignocellulosic biomass and the management of wastewater streams, contributing to the development of a more sustainable and economically viable process.