UB - Artigos em revistas internacionais
Permanent URI for this collection
Browse
Browsing UB - Artigos em revistas internacionais by Title
Now showing 1 - 10 of 357
Results Per Page
Sort Options
- Ability of Gordonia alkanivorans strain 1B for high added value carotenoids productionPublication . Silva, Tiago; Paixão, Susana M.; Alves, LuísCurrently, carotenoids are valuable bioactive molecules for several industries, such as chemical, pharmaceutical, food and cosmetics, due to their multiple benefits as natural colorants, antioxidants and vitamin precursors. Hence, the increasing interest on these high added-value products has led to the search of alternatives, more cost-effective and with better yields, towards their industrial production. Indeed, microbial metabolism offers a promising option for carotenoids production. Herein it is shown the potential of the dibenzothiophene desulfurizing bacterium Gordonia alkanivorans strain 1B as a high carotenoid-producer microorganism. The novel carotenoids, produced under different culture conditions, were extracted with DMSO and then further analyzed both through spectrophotometry and HPLC. When grown in glucose-sulfate-light, strain 1B was able of achieving 2015 g carotenoids per g DCW in shake-flask assays, with about 60% corresponding to lutein, canthaxanthin and astaxanthin. Further optimization studies open a new focus of research aiming to get a hyper pigment-producer strain that may be applied towards different industrial sectors.
- Acid-modified clays as green catalysts for the hydrolysis of hemicellulosic oligosaccharidesPublication . Vilcocq, Léa; Spinola, Vitor; Moniz, Patricia; Duarte, Luís C.; Carvalheiro, Florbela; Fernandes, César; Castilho, Paula C.The hydrolysis of hemicellulosic oligosaccharides (OS) was investigated using acid-activated clays (prepared from natural Porto Santo montmorillonite clay) as catalysts. Acid activation was performed in HCl solution or with aluminium exchange. The clay catalysts were characterized by XRD, N2 adsorption isotherms, CEC, FTIR, titration of acid sites in water and adsorption of sugars and disaccharides. They were tested for the hydrolysis of a model compound, maltose, and of OS-rich liquor from rice straw fractionation. The HCl-activated clays were the most efficient catalysts for maltose hydrolysis. It was demonstrated that the hydrolysis of OS into monomer sugars over a clay catalyst is technically feasible and that this reaction leads to the selective removal of glucose, arabinose and acetic acid side groups from the OS structure, thus yielding simpler xylo-oligosaccharide chains. Furthermore, no significant conversion of monomer sugars into furans was observed.
- Acidic ionic liquids as sustainable approach of cellulose and lignocellulosic biomass conversion without additional catalystsPublication . Lopes, André; Lukasik, Rafal M.The use of ionic liquids (ILs) for biomass processing has attracted considerable attention recently as it provides distinct features for pre-treated biomass and fractionated materials in comparison to conventional processes. Process intensification through integration of dissolution, fractionation, hydrolysis and/or conversion in one pot should be accomplished to maximise economic and technological feasibility. The possibility of using alternative ILs capable not only of dissolving and deconstructing selectively biomass but also of catalysing reactions simultaneously are a potential solution of this problem. In this Review a critical overview of the state of the art and perspectives of the hydrolysis and conversion of cellulose and lignocellulosic biomass using acidic ILs using no additional catalyst are provided. The efficiency of the process is mainly considered with regard to the hydrolysis and conversion yields obtained and the selectivity of each reaction. The process conditions can be easily tuned to obtain sugars and/or platform chemicals, such as furans and organic acids. On the other hand, product recovery from the IL and its purity are the main challenges for the acceptance of this technology as a feasible alternative to conventional processes.
- Activated carbons from the co-pyrolysis of rice wastes for Cr(III) removalPublication . Dias, Diogo; Bernardo, Maria; Lapa, Nuno; Pinto, Filomena; Matos, Inês; Fonseca, Isabel MariaABSTRACT: Rice husk and polyethylene were mixed (50 % w/w each) and submitted to a pyrolysis assay. Four physical activations with CO2 were performed on the resulting co-pyrolysis char (PC). The activation at 800 °C, for 4h, generated the activated carbon (PAC3) with the best textural properties. PC, PAC3 and a commercial activated carbon (CAC) were characterized and submitted to Cr(III) removal assays. PC had a high percentage of volatile matter that was removed after the physical activation, resulting in more available pores in the final material (PAC). In the Cr(III) removal assays, two S/L ratios were tested: 5 and 10 g L-1. PC did not remove any Cr(III) from the solutions, but PAC presented similar results to CAC. At the S/L of 5 g L-1, Cr(III) removal was of 58.5 % for PAC and 62.5 % for CAC, both by adsorption mechanism; at the S/L of 10 g L-1, Cr(III) removal was almost complete due to precipitation caused by pH increase. The highest uptake capacities were of 7.92 mg g-1 for PAC and 8.71 mg g-1 for CAC, at the S/L of 5 g L-1. The results indicated that PAC3 may be a viable alternative to CAC on Cr(III) removal from aqueous media.
- Admissibility Grid to Support the Decision for the Preferential Routing of Portuguese Endogenous Waste Biomass for the Production of Biogas, Advanced Biofuels, Electricity and HeatPublication . Crujeira, Teresa; Trancoso, Maria Ascensão; Eusebio, Ana; Oliveira, Ana Cristina; Passarinho, Paula; Abreu, Mariana; Marques, Isabel Paula; Marques, Paula; Marques, Susana; Albergaria, Helena; Pinto, Filomena; Costa, Paula; Andre, Rui N.; Girio, Francisco; Moura, PatríciaABSTRACT: A methodology was developed to assess the allocation of different types of endogenous waste biomass to eight technologies for producing electricity, heat, biogas and advanced biofuels. It was based on the identification of key physicochemical parameters for each conversion process and the definition of limit values for each parameter, applied to two different matrices of waste biomass. This enabled the creation of one Admissibility Grid with target values per type of waste biomass and conversion technology, applicable to a decision process in the routing to energy production. The construction of the grid was based on the evaluation of 24 types of waste biomass, corresponding to 48 sets of samples tested, for which a detailed physicochemical characterization and an admissibility assessment were made. The samples were collected from Municipal Solid Waste treatment facilities, sewage sludges, agro-industrial companies, poultry farms, and pulp and paper industries. The conversion technologies and energy products considered were (trans)esterification to fatty acid methyl esters, anaerobic digestion to methane, fermentation to bioethanol, dark fermentation to biohydrogen, combustion to electricity and heat, gasification to syngas, and pyrolysis and hydrothermal liquefaction to bio-oils. The validation of the Admissibility Grid was based on the determination of conversion rates and product yields over 23 case studies that were selected according to the best combinations of waste biomass type versus technological solution and energy product.
- Algae as food in Europe: an overview of species diversity and their applicationPublication . Mendes, Madalena Caria; Navalho, Sofia; Ferreira, Alice; Paulino, Cristina; Figueiredo, Daniel; Silva, Daniel; Gao, Fengzheng; Gama, Florinda; Bombo, Gabriel; Jacinto, Rita; Aveiro, Susana; Schulze, Peter; Gonçalves, Ana Teresa; Pereira, Hugo; Gouveia, Luisa; Patarra, Rita F.; Abreu, Maria Helena; Silva, Joana; Navalho, João; Varela, João; Speranza, Lais GalileuABSTRACT: Algae have been consumed for millennia in several parts of the world as food, food supplements, and additives, due to their unique organoleptic properties and nutritional and health benefits. Algae are sustainable sources of proteins, minerals, and fiber, with well-balanced essential amino acids, pigments, and fatty acids, among other relevant metabolites for human nutrition. This review covers the historical consumption of algae in Europe, developments in the current European market, challenges when introducing new species to the market, bottlenecks in production technology, consumer acceptance, and legislation. The current algae species that are consumed and commercialized in Europe were investigated, according to their status under the European Union (EU) Novel Food legislation, along with the market perspectives in terms of the current research and development initiatives, while evaluating the interest and potential in the European market. The regular consumption of more than 150 algae species was identified, of which only 20% are approved under the EU Novel Food legislation, which demonstrates that the current legislation is not broad enough and requires an urgent update. Finally, the potential of the European algae market growth was indicated by the analysis of the trends in research, technological advances, and market initiatives to promote algae commercialization and consumption.
- Algaeculture for agriculture: from past to futurePublication . Ferreira, Alice; Bastos, Carolina R. V.; Santos, Cláudia Marques dos; Acién, F. Gabriel; Gouveia, LuisaABSTRACT: The continuous growth of the world population has imposed major challenges on agriculture. Consequently, farmers generalized the overuse of synthetic fertilizers and pesticides to meet the global food demand. Although these products have helped many developing countries increase their crop yield, they have simultaneously resulted in many issues, mainly the decline of soil fertility and degradation of local ecosystems due to soil, water, and air contamination, combined with their non-renewable nature and increased costs. For agriculture to become more sustainable, the use of alternative biological products, with recognized beneficial effects on plant yield and health, must be expanded. In this context, microalgae and cyanobacteria are rich sources of nutrients and bioactive metabolites, which have been gaining attention from researchers and companies for their ability to improve plant nutrition, growth, and tolerance to stress. This review gives an overview of the research work that has been done in the last two decades, regarding the use of microalgae and cyanobacteria (blue-green algae) as biofertilizers, biostimulants, and biopesticides. This work identified trends and challenges and highlights the use of microalgae to recycle the nutrients from wastewater to improve plant productivity while reducing the fertilizer and water footprint for more sustainable agriculture practices.
- Algal biomass production and wastewater treatment in high rate algal ponds receiving disinfected effluentPublication . Santiago, Aníbal F.; Calijuri, Maria Lucia; Assemany, Paula; Calijuri, Maria do Carmo; Reis, AlbertoAlgal biomass production associated with wastewater is usually carried out in high rate algal ponds (HRAPs), which are concomitantly used in the treatment of such effluent. However, most types of wastewater have high levels of bacteria that can inhibit the growth of algal biomass by competing for space and nutrients. The objective of this study was to assess the influence of ultraviolet (UV) pre-disinfection on the performance of HRAPs used for wastewater treatment and algal biomass production. Two HRAPs were tested: one received effluent from an upflow anaerobic sludge blanket (UASB) reactor – HRAP – and the second received UASB effluent pre-disinfected by UV radiation – UVHRAP. Physical, chemical and microbiological parameters were monitored, as well as algal biomass productivity and daily pH and dissolved oxygen (DO) variation. The UVHRAP presented highest DO and pH values, as well as greater percentage of chlorophyll a in the biomass, which indicates greater algal biomass productivity. The average percentages of chlorophyll a found in the biomass obtained from the HRAP and the UVHRAP were 0.95±0.65% and 1.58±0.65%, respectively. However, total biomass productivity was greater in the HRAP (11.4 gVSS m-2 day-1) compared with the UVHRAP (9.3 gVSS m-2 day-1). Mean pH values were 7.7±0.7 in the HRAP and 8.1±1.0 in the UVHRAP, and mean values of DO percent saturation were 87±26% and 112±31% for the HRAP and the UVHRAP, respectively. Despite these differences, removal efficiencies of organic carbon, chemical oxygen demand, ammoniacal nitrogen and soluble phosphorus were statistically equal at the 5% significance level.
- Alternative feedstocks for high-quality biodiesel: Lipid production from eucalyptus bark hydrolysate by Yarrowia lipolytica W29 using different cultivation modesPublication . Dias, Bruna; Lopes, Marlene; Marques, Susana; Gírio, Francisco; Belo, IsabelABSTRACT: Microbial lipids produced by yeasts from lignocellulosic biomass are a promising feedstock for the biodiesel industry, providing a renewable energy source as an alternative to traditional fossil fuels. This study investigated the potential of Yarrowia lipolytica W29 to produce lipid-rich biomass from undetoxified sugar-concentrated eucalyptus bark hydrolysate (EBH). The lipid concentrations achieved in batch cultures (13.4 g L-1) were the highest for wild-type Y. lipolytica strains in lignocellulosic hydrolysates. Different two-stage cultivation modes (repeated batch, continuous-feeding fed-batch, and pulse fed-batch) were studied to enhance biomass and lipid production. The cell and lipid mass was higher in pulse fed-batch and continuous-feeding fed-batch cultures than batch cultures. Production of citric acid, a side product of industrial interest, was improved in the continuous-feeding fed-batch culture. Microbial lipids produced by Y. lipolytica W29 were highly unsaturated and mainly composed of oleic acid (50% to 53%). The estimated properties of the biodiesel that would be obtained from these intracellular lipids would meet the international biodiesel standards EN 14214 and ASTM D6751. This study demonstrates the feasibility of using EBH for Y. lipolytica lipid production and promotes the sustainable production of high-quality biodiesel from lignocellulosic feedstocks.
- Ammonium ionic liquids as green solvents for drugsPublication . Melo, Catarina I.; Lukasik, Rafal M.; Ponte, Manuel Nunes; Bogel-Lukasik, EwaA high solubility of antituberculosis antibiotic drugs: isoniazid and pyrazinecarboxamide in ammonium ionic liquids shown in this work, demonstrates the promising perspectives in the drug processing. Solid–liquid equilibrium (SLE) measurements have been made using a dynamic (synthetic) method. Thermophyscial properties such as melting point, enthalpy of fusion, temperatures of phase transitions and corresponding enthalpies for both isoniazid and pyrazinecarboxamide as well as for three ammonium salts were acquired using differential scanning calorimetry (DSC). The solubility of isoniazid in analysed ILs was found to be higher than that of pyrazinecarboxamide. Considering ammonium salts examined in this work, didecyldimethylammonium nitrate is the best solvent for both antibiotics. The solid–liquid phase equilibria were described using six different correlation equations which revealed a relatively good description with an acceptable standard deviation temperature range.