UB - Artigos em revistas internacionais
Permanent URI for this collection
Browse
Browsing UB - Artigos em revistas internacionais by Field of Science and Technology (FOS) "Engenharia e Tecnologia::Outras Engenharias e Tecnologias"
Now showing 1 - 10 of 17
Results Per Page
Sort Options
- Biopolymers Derived from Forest Biomass for the Sustainable Textile IndustryPublication . Dias, J. C.; Marques, Susana; Branco, Pedro C.; Rodrigues, Thomas; Torres, Cristiana A.V.; Freitas, Filomena; Evtuguin, Dmitry; Silva, CarlaABSTRACT: In line with environmental awareness movements and social concerns, the textile industry is prioritizing sustainability in its strategic planning, product decisions, and brand initiatives. The use of non-biodegradable materials, obtained from non-renewable sources, contributes heavily to environmental pollution throughout the textile production chain. As sustainable alternatives, considerable efforts are being made to incorporate biodegradable biopolymers derived from residual biomass, with reasonable production costs, to replace or reduce the use of synthetic petrochemical-based polymers. However, the commercial deployment of these biopolymers is dependent on high biomass availability and a cost-effective supply. Residual forest biomass, with lignocellulosic composition and seasonably available at low cost, constitutes an attractive renewable resource that might be used as raw material. Thus, this review aims at carrying out a comprehensive analysis of the existing literature on the use of residual forest biomass as a source of new biomaterials for the textile industry, identifying current gaps or problems. Three specific biopolymers are considered: lignin that is recovered from forest biomass, and the bacterial biopolymers poly(hydroxyalkanoates) (PHAs) and bacterial cellulose (BC), which can be produced from sugar-rich hydrolysates derived from the polysaccharide fractions of forest biomass. Lignin, PHA, and BC can find use in textile applications, for example, to develop fibers or technical textiles, thus replacing the currently used synthetic materials. This approach will considerably contribute to improving the sustainability of the textile industry by reducing the amount of non-biodegradable materials upon disposal of textiles, reducing their environmental impact. Moreover, the integration of residual forest biomass as renewable raw material to produce advanced biomaterials for the textile industry is consistent with the principles of the circular economy and the bioeconomy and offers potential for the development of innovative materials for this industry.
- Bridging gaps in biorefineries: The unexplored role of social dimension in life cycle assessment researchPublication . Ortigueira, Joana; Lopes, TiagoABSTRACT: This review examines the disregarded role of social dimensions in Life Cycle Assessment (LCA) within biorefinery implementation, addressing the question: "How can the inclusion of social factors in LCA improve sustainability assessments, and what are the implications of the limited Social Life Cycle Assessment (S-LCA) studies in biorefineries?" A systematic literature review was conducted using Web of ScienceTM, focusing on studies that integrate social dimensions in LCA. Bibliometric analysis using the bibliometrix R-package and VOSviewer identified key trends, influential papers, and research gaps. Results revealed a significant gap in incorporating social dimensions into biorefinery LCA, with most studies focusing primarily on environmental and economic impacts. Limited attention is given to social aspects such as community well-being, labor rights, and social equity. Case studies that included social factors demonstrated a more comprehensive sustainability assessment, emphasizing the importance of stakeholder engagement and social acceptability in biorefinery projects. This review highlights the need for standardized social indicators and methodologies to integrate social dimensions effectively. The lack of S-LCA in biorefinery implementation reflects a critical gap in sustainability assessments. Addressing this requires developing a unified S-LCA methodology, fostering interdisciplinary collaboration, and encouraging stakeholder participation to ensure diverse perspectives are considered. Ultimately, incorporating social dimensions is essential for achieving a more balanced and comprehensive evaluation of biorefinery sustainability.
- Clean production of microalgae high-value lipid fraction: Influence of different pretreatments on chemical and cytotoxic profiles of Chlorella vulgaris supercritical extracts and life cycle assessmentPublication . Vladic, Jelena; Radman, Sanja; Jerkovic, Igor; Besu, Irina; Speranza, Lais Galileu; Hala, Ahmad Furqan; Kovacevic, Strahinja; Perreira, Hugo; Gouveia, LuisaABSTRACT: Microalgae have emerged as a promising natural resource rich in bioactive compounds. Health-beneficial properties of microalgae, coupled with advantageous characteristics such as high biomass productivity, adaptability, robustness, and carbon dioxide mitigation, position them as a viable solution for global sustainable food production. This study explored clean and environmentally friendly processes to enhance the recovery of lipid bioactive fractions. Microwave (MW), enzymatic (ENZ), and ultrasound (US) pretreatments were applied to improve environmentally friendly extraction of lipid-based components using supercritical CO2. The effects of these pretreatments on extraction yield, chemical profiles, and cytotoxic properties of Chlorella vulgaris (Cv) and smooth C. vulgaris (sCv) extracts were investigated. Additionally, a Life Cycle Assessment (LCA) was conducted to evaluate environmental impacts. MW pretreatment achieved the highest yield increases, from 2.58 times (Cv) to 3.15 times (sCv). UHPLC-ESI-HRMS analysis revealed shifts in the distribution of pigments and derivatives caused by pretreatments, with ENZ extracts showing the most pronounced changes: pigments increased from 9.24% (control Cv) to 40.92% (Cv) and from 12.52% (control sCv) to 71.12% (sCv). Cv extracts exhibited greater activity against MDA-MB-453 cells, while sCv extracts from US pretreatment demonstrated the strongest effect on HeLa cells. The LCA indicated reduced environmental impacts of the pretreatment-enhanced processes up to 65% compared to the control. A scenario analysis was presented to show further possible impact reduction by recirculating the CO2 solvent and substituting the energy source. These findings provide valuable insights into sustainable and scalable green processes for recovering microalgal bioactive components.
- Consortium of microalgae/nitrogen-fixing bacteria as a next-generation biofertilizer, biostimulant and biopesticidePublication . Gouveia, Luisa; Ferreira, Alice; Bastos, Carolina R. V.; Avetisova, Gayane; Karapetyan, Zh.; Toplaghaltsyan, A.; Melkonyan, LusineABSTRACT: This study aims to provide insights into a new consortium of a microalga, twelve nitrogen-fixing (N-fixing) bacteria and a cyanobacterium. The microalga Tetradesmus obliquus (T), in conjunction with various N-fixing bacteria and the cyanobacterium Synechocystis sp. PCC 6803 (S), the N-fixing bacterium Sphingobacterium sp. L13G8 (5), cultivated in complete Bristol medium and in Bristol-NaNO3 free conditions, were examined. The study encompassed the analysis of their consortia, including evaluation of their growth, and potential as a biostimulant, biofertilizer and biopesticide, and assessed for sedimentation performance for targeted applications. The T and N-fixing bacteria consortia had higher growth in Bristol NaNO3-free media. The triple culture TS5 had the highest growth parameter (2.4 OD540) in the same medium, followed by T5. The consortia were employed to ascertain the efficacy of their biostimulants and biofertilizers on watercress (Lepidium sativum) and to determine the potency of their biopesticides against the fungal pathogens Fusarium oxysporum and Rhizoctonia solani (in certain consortia). Consortium T5 demonstrated the most significant impact on the seeds germination index (212.7%) and root length (6.0 cm) of L. sativum. The same consortium had a significant impact on the shoot length (4.4 cm) of L. sativum. Among all consortia that were examined, T5 exhibited significant inhibitory effects on the growth of F. oxysporum (60.6%) and R. solani (69.2%). In the same consortium, the rate of microalgal biomass sedimentation was enhanced by the N-fixing bacterium (0.4 cm h-1). Consortium T5 was the most effective in relation to growth and biomass sedimentation efficiency, in addition to its use as a biostimulant, biofertilizer and biopesticide. The created combination of microalga and N-fixing bacterium represents significant progress in the field of microalga cultivation, with notable benefits including improved biomass sedimentation and enhanced agricultural practices, as well as environmental friendliness and safety.
- Design optimisation of five pilot-scale two-stage vertical flow-constructed wetlands for piggery wastewater treatmentPublication . Karan, N.; Gogoi, Jayanta; Ganguly, Anasuya; Brito, António; Marques dos Santos, C.; de Oliveira Corrêa, Diego; Gouveia, Luisa; Mutnuri, SrikanthABSTRACT: With growing pig farming, sustainable piggery wastewater treatment methods are essential for environmental protection. This study evaluated five pilot-scale two-stage vertical flow-constructed wetlands (VFCWs) with varying configurations of aeration, plantation, and saturation zones. Three VFCW configurations (1VFCW, 2VFCW, and 3VFCW) were unsaturated, while 4VFCW and 5VFCW were saturated in the second stage (up to 60 and 90 cm, respectively). The 5VFCW featured a stacked configuration with no space between its two stages. Passive aeration was selectively applied in 2VFCW, 3VFCW, 4VFCW, and 5VFCW, while plants were present in most configurations except the control. Saturated 4VFCW achieved the highest removal efficiency for TN (77.03 ± 16.24%) and NO3− (46.06 ± 45.96%), while the stacked 5VFCW showed the highest removal for chemical oxygen demand (COD) (94.17 ± 4.85%) and Total ammoniacal nitrogen (TOC) (86.35 ± 6.78%). Unsaturated 1VFCW excelled in TAN removal (98.89 ± 0.33%), and the control system (C) showed the highest removal efficiency for PO43− (90.38 ± 6.52%) and TOC (87.52 ± 9.83%). Overall, 4VFCW emerged as the most balanced and effective system, supported by an optimal combination of aerobic and anaerobic conditions that facilitated sequential nitrification and denitrification, along with an extended hydraulic retention time due to saturation.
- Energy potential of elephant grass broth as biomass for biogas productionPublication . da Silva, Guilherme Henrique; Renato, Natalia dos Santos; Coelho, Felipe Ferreira; Donato, Thiago Paiva; Otenio, Marcelo; Machado, Juarez; Delgado dos Reis, Alberto JoséABSTRACT: The growing demand for clean energy has highlighted plant biomass as a valuable alternative, supporting sustainable development goals. Elephant grass (EG) is a promising feedstock due to its adaptability to diverse soils and climates, high dry matter production, and substantial energy yield. This study aimed to evaluate and characterize six selected EG genotypes (BRS Capia & ccedil;u, T_23.1, T_23.2, T_41.2, T_47.1, and T_51.5) based on their broth productivity and energy yield. Analysis of the broth's yield and physicochemical properties revealed that the by-product extracted from the biomass had a high residual energy value. Additionally, extracting the broth reduces the grass's biomass moisture content, enhancing its calorific value and improving the bagasse quality for combustion in boilers, thus optimizing energy production. This study demonstrates that the promising EG genotypes T_47.1, T_41.2, and T_23.1 presented relevant energy values ranging from 4248.12 to 4304.06 kcal kg- 1 of bagasse and thus are suitable for energy production through direct combustion. The extracted broth is a valuable residual energy source that can be utilized industrially after anaerobic digestion. Future research should focus on the environmental and economic effectiveness of EG broth as an energy source from waste and its potential for biogas production.
- Fractionation of macroalgae carbohydrates using hydrothermal and dilute inorganic salt pretreatments to produce oligosaccharides and furansPublication . Martins, Pedro L.; Andrade, Cristiana; Duarte, Luís; Reis, Alberto; Pereira, Helena; Carvalheiro, FlorbelaABSTRACT: Furans are among the most important compounds derived from biomass, providing conversion pathways for sustainable alternatives to petroleum-based fuels and materials. Furfural, 5-hydroxymethylfurfural (5-HMF), and 5-methylfurfural (5-MF) are furans that can be obtained by carbohydrate dehydration under acidic conditions at elevated temperature and pressure. One of the mechanisms to produce these compounds from lignocellulosic materials relies on prior fractionation of biomass carbohydrates and further dehydration catalysis. However, this is a costly and technically challenging method and it would be advantageous to develop a one-pot conversion mechanism that facilitates simultaneous biomass fractionation and conversion to furans. Ulva lactuca is an alga that has the advantage of being lignin-free and rich in glucose, rhamnose, and xylose, which are ideal for producing 5-HMF, 5-MF, and furfural, respectively. The high diversity of sugar constituents is also relevant for the production of added-value oligosaccharides. Catalysis with inorganic salts has been reported as a successful tool for biomass upgrading to furans when combined with hydrothermal pretreatments, and could provide a cheap and environmentally friendly one-step methodology for furan production. This study therefore aimed to investigate the effect of hydrothermal and dilute acid pretreatments, as well as treatment with inorganic salt solutions (ferric chloride, ferric nitrate, and aluminium nitrate) on U. lactuca biomass to produce oligosaccharides, monosaccharides, and furans (furfural, 5-HMF, and 5-MF). These methods resulted in a maximum sugar solubilization of 65% in non-salt-assisted hydrothermal pretreatments and 84% in salt-assisted hydrothermal pretreatments, with inorganic salt catalysis also resulting in 100% xylose, 36% glucose, and 46% rhamnose conversion to the respective furans.
- Industrial Off-Gas Fermentation for Acetic Acid Production: A Carbon Footprint Assessment in the Context of Energy TransitionPublication . Pacheco, Marta; Brac de la Perrière, Adrien; Moura, Patrícia; silva, carlaABSTRACT: Most industrial processes depend on heat, electricity, demineralized water, and chemical inputs, which themselves are produced through energy- and resource-intensive industrial activities. In this work, acetic acid (AA) production from syngas (CO, CO2, and H2) fermentation is explored and compared against a thermochemical fossil benchmark and other thermochemical/biological processes across four main Key Performance Indicators (KPI)—electricity use, heat use, water consumption, and carbon footprint (CF)—for the years 2023 and 2050 in Portugal and France. CF was evaluated through transparent and public inventories for all the processes involved in chemical production and utilities. Spreadsheet-traceable matrices for hotspot identification were also developed. The fossil benchmark, with all the necessary cascade processes, was 0.64 kg CO2-eq/kg AA, 1.53 kWh/kg AA, 22.02 MJ/kg AA, and 1.62 L water/kg AA for the Portuguese 2023 energy mix, with a reduction of 162% of the CO2-eq in the 2050 energy transition context. The results demonstrated that industrial practices would benefit greatly from the transition from fossil to renewable energy and from more sustainable chemical sources. For carbon-intensive sectors like steel or cement, the acetogenic syngas fermentation appears as a scalable bridge technology, converting the flue gas waste stream into marketable products and accelerating the transition towards a circular economy.
- Influence of Inhibitors Generated in Lignocellulosic Hydrolysates from Group of Acids on the Growth of Strains TG1 and Tuner of Escherichia coliPublication . Gaspar, Suelen S.; Alves Ferreira Caturra, Júnia Aparecida; Moniz, Patricia; Silva-Fernandes, Talita; Silvestre, Adriana I. R; Torrado, Ivone; Pesce, Gaetano R.; Carvalheiro, Florbela; Duarte, Luís; Fernandes, Maria da ConceiçãoABSTRACT: Concerns over fossil fuels are of increasing interest in biorefineries that utilize lignocellulosic residues. Besides sugars, inhibitors are formed during biomass pretreatment, including acetic acid (AI) and formic acid (FI), which can hinder microbial fermentation. The TG1 and Tuner strains of Escherichia coli were subjected to various acid concentrations. Samples were taken during fermentation to monitor growth, sugar consumption, biomass yield, and product yield. With increasing AI, the TG1 strain maintained stable growth (0.102 1/h), while xylose consumption decreased, and product formation improved, making it better suited for high-acetic-acid industrial applications. In contrast, the Tuner strain performed better under low-inhibitor conditions but suffered metabolic inhibition at high AI levels, compensating by increasing lactic acid production-an adaptation absent in TG1. However, Tuner showed greater resistance to formic acid stress, sustaining higher growth and ethanol production, whereas TG1 experienced a greater metabolic decline but maintained stable acetic acid output. Both strains experienced inhibition in formic acid metabolism, but TG1 had a higher yield despite its lower overall robustness in formic acid conditions. The use of TG1 for value-added compounds such as ethanol or formic acid may help to avoid the use of chemicals that eliminate acetic acid. Tuner could be used for lactic acid production, especially in hydrolysates with under moderate concentration.
- Integrating social aspects in microalgal biorefineries: a Product Social Impact Life Cycle Assessment (PSILCA) approachPublication . Ortigueira, Joana; Lopes, Tiago; Reis, Alberto; Gírio, FranciscoABSTRACT: The ongoing climate change phenomenon requires the reduction of atmospheric CO2 concentrations. Microalgal biorefineries, which convert atmospheric CO2 into chemical energy, offer a viable alternative to fossil fuel-based industrial systems. This study assesses the social impacts of microalgal biorefineries using the Product Social Impact Life Cycle Assessment database approach, focusing on an industrial facility located in P & oacute;voa de Santa Iria, Vila Franca de Xira, Portugal. The foreground system involves the production of microalgae in cascade raceway systems, followed by their refinement into protein, lipid and carbohydrate fractions. Dedicated surveys were distributed to the local community to collect social data, which was then analyzed using the Product Social Impact Life Cycle Assessment (PSILCA) database and a newly designed evaluation schema. Preliminary data from approximately 300 valid responses indicated that the local community faces a medium risk of being unfamiliar with the concept of microalgae or its benefits but acknowledged the high probability of local economic benefits and job creation upon implementation. The study highlights a general lack of familiarity with microalgae among the local community, which could affect the acceptance of the biorefinery. Although the PSILCA approach identifies social hotspots effectively, reliance on generic data may not accurately represent the local context. The study underscores the need for enhanced information dissemination to improve community acceptance and support for microalgal biorefineries. Preliminary data collection and analysis highlight the potential for social benefits, but further research is required to address the identified limitations.