ENERGIA
Permanent URI for this community
Browse
Browsing ENERGIA by Field of Science and Technology (FOS) "Engenharia e Tecnologia::Engenharia dos Materiais"
Now showing 1 - 8 of 8
Results Per Page
Sort Options
- Detection of corrosion on silvered glass reflectors via image processingPublication . Wiesinger, Florian; Baghouil, Sarah; Le Baron, Estelle; Collignon, Romain; Santos, Filipa; Cunha Diamantino, Teresa; Catarino, Isabel; Facão, Jorge; Ferreira, Cristina; Páscoa, Soraia; Sutter, Florian; Fernández-García, Aránzazu; Wette, JohannesABSTRACT: A novel characterization technique based on image analysis is presented, intended to complement state-of-the-art reflectometer measurements. The technique is developed by experts from different laboratories (OPAC, AGC, CEA and LNEG), which subsequently conduct two Round Robin experiments on corroded solar reflectors for validation. Regarding the inter-comparability, it is found that parameters like the corrosion spot density or the penetration maximum on coated edges exhibit an average coefficient of variation of 62.6 % and 54.9 %. Better agreement is found for parameters like the total corroded area and the maximum edge corrosion penetration, with coefficients of variation of 14.3 % and 13.4 %, respectively. The developed methodology is further applied during a 68-month lasting outdoor exposure campaign of two types of solar reflectors at two representative sites, one exhibiting corrosivity class C2 and the other C3. On the commercial coating RL1, a total corroded area of 59 mm2 and 426 mm2 is measured after the outdoor exposure on the C2 and the C3 site, respectively, while on the novel low-lead coated reflector RL3 corresponding values are 280 mm2 and 1308 mm2. This shows the superior quality of the coating RL1 in terms of corrosion resistance. Furthermore, the analysis highlights the importance of proper edge sealing for corrosion protection, since corrosion penetration is increased by a factor between 1.3 and 4.0 if the edges are unprotected. The reflectance decrease after the outdoor exposure is regarded as negligible (0.000 - 0.005), thus not permitting any of the conclusions that are made from the novel image analysis technique.
- Enhancing Corrosion Resistance of Al-Mg Alloys through Biomineralization [Resumo]Publication . Marques, Maria João; Fori, Benoit; Mercier, Dimitri; Seyeux, Antoine; Zanna, Sandrine; Marcus, Philippe; BASSEGUY, RegineABSTRACT: In recent decades, new emerging microbiological technologies have been studied, based on the recognition that microorganisms can inhibit corrosion by different mechanisms, the so-called MICI (microbiologically influenced corrosion inhibition), opening up different lines of research. In this context, biomineralization has been attracting the attention of researchers, with an increasing number of studies showing that different types of mineralized layers formed on metal surfaces can reduce the risk of corrosion.
- Exploring Marine Biomineralization on the Al-Mg Alloy as a Natural Process for In Situ LDH Growth to Improve Corrosion ResistancePublication . Marques, Maria João; Mercier, Dimitri; Seyeux, Antoine; Zanna, Sandrine; Tenailleau, Christophe; Duployer, Benjamin; Jeannin, Marc; Marcus, Philippe; Basséguy; BASSEGUY, RegineABSTRACT: This study provides a detailed characterization of the AA5083 aluminum alloy, surface, and interface over 6 months of immersion in seawater, employing techniques such as SEM/EDX, GIXRD, mu-Raman and XPS. The purpose was to evaluate the evolution of the biomineralization process that occurs on the Al-Mg alloy. By investigating the specific conditions that favor the in situ growth of layered double hydroxide (LDH) during seawater immersion as a result of biomineralization, this research provides insights into marine biomineralization, highlighting its potential as an innovative and sustainable strategy for corrosion protection.
- La biominéralisation comme bioinspiration pour le développement de solutions anti-corrosion [Resumo]Publication . BASSEGUY, Regine; Marques, Maria JoãoRÉSUMÉ: Dans le domaine de la corrosion, la nature se révèle être une source d’inspiration pour développer de nouveaux concepts de protection verts. En effet, il est largement reconnu que les micro-organismes sont capables non seulement d’accélérer la orrosion mais ils peuvent également l'inhiber et/ou protéger les matériaux qu’ils colonisent [1]. Ce constat a ainsi conduit à proposer des stratégies à base microbienne pour l'inhibition de la corrosion des métaux. En particulier, le processus de biominéralisation à la surface des matériaux, tels que les pierres, le béton et divers métaux, a récemment été considéré comme une nouvelle approche respectueuse de l'environnement pour produire des couches protectrices [2-3]. Jusqu’à peu, la majorité des publications concernaient les aciers, matériaux historiquement utilisés dans les infrastructures. Au cours des dernières années, de nouveaux matériaux tels que les alliages d'aluminium, sont apparus sur le marché comme des alternatives possibles. Dans le cas spécifique de l'alliage Al-Mg, souvent utilisé dans les applications marines, peu d'études ont évalué l'influence de la biominéralisation sur la corrosion [4-6]. L'objectif de cette présentation est de montrer, à travers deux études de cas, comment la précipitation minérale influencée par l’activité microbienne sur les matériaux métalliques peut être envisagée comme une nouvelle approche pour le développement de solutions anti-corrosion.
- NEWS4CSP Project: New coatings approaches to protect metallic materials from heat transfer fluids [Poster]Publication . Cunha Diamantino, Teresa; Pedrosa, Fátima; Paiva Luís, Teresa; Ferreira da Silva, Eduardo; Gonçalves, Francisco; Monteiro, Renato; Cardoso, João
- Simulation of Surface Segregation in Nanoparticles of Pt-Pd AlloysPublication . Correia, Jose B.; Sá, AnaABSTRACT: Platinum (Pt) and palladium (Pd) are crucial in hydrogen energy technologies, especially in fuel cells, due to their high catalytic activity and chemical stability. Pt-Pd nanoparticles, produced through various methods, enhance catalytic performance based on their size, shape, and composition. These nanocatalysts excel in direct methanol fuel cells (DMFCs) and direct ethanol fuel cells (DEFCs) by promoting alcohol oxidation and reducing CO poisoning. Pt-Pd catalysts are also being explored for their oxygen reduction reaction (ORR) on the cathodic side of fuel cells, showing higher activity and stability than pure platinum. Molecular dynamics (MD) simulations have been conducted to understand the structural and surface energy effects of PdPt nanoparticles, revealing phase separation and chemical ordering, which are critical for optimizing these catalysts. Pd migration to the surface layer in Pt-Pd alloys minimizes the overall potential energy through the formation of Pd surface monolayers and Pt-Pd bonds, leading to a lower surface energy for intermediate compositions compared to that of the pure elements. The potential energy, calculated from MD simulations, increases with a decreasing particle size due to surface creation, indicating higher reactivity for smaller particles. A general contraction of the average distance to the nearest neighbour atoms was determined for the top surface layers within the nanoparticles. This research highlights the significant impact of Pd segregation on the structural and surface energy properties of Pt-Pd nanoparticles. The formation of Pd monolayers and the resulting core-shell structures influence the catalytic activity and stability of these nanoparticles, with smaller particles exhibiting higher surface energy and reactivity. These findings provide insights into the design and optimization of Pt-Pd nanocatalysts for various applications.
- Thermally modified wood: assessing the impact of weathering on mechanical strength and exposure to subterranean termitesPublication . Godinho, Delfina; Lourenco, Ana; Araújo, Solange; Machado, José Saporiti; Nunes, Lina; Duarte, Marta; Duarte, Sónia; Ferreira, Cristina; Quilhó, Teresa; Cunha Diamantino, Teresa; Gominho, JorgeABSTRACT: The main objective of this study was to evaluate the mechanical properties of three thermal-modified wood species when exposed to weathering in urban and maritime/industrial environments and their durability against subterranean termites. The wood species studied were Maritime pine, ash, and blackwood acacia. All wood samples were exposed to two different environments (urban and maritime/industrial) for 24 months. Then, its physical and mechanical properties were evaluated (modulus of elasticity (MOE), modulus of rupture (MOR), compression strength (CS), and modulus of compression (MOC). Thermally modified woods revealed a lower density, which could explain the loss of MOE and MOR. In compression, no significant changes were verified. The weathered samples showed changes in mechanical properties, mostly verified in MOE and MOR, where some decreases were reported in both locations. Tests were performed to evaluate biodegradation and the resistance of all wood samples to subterranean termites. The grade of attack (approximate to 4) and termite survival rate were similar in all wood species (above 75% and lower than 80%), except for modified acacia (59%), which could indicate that thermal modification increased toxic substances. The cellulose degradation was reflected in FTIR-ATR and Py-GC/MS in natural and thermally modified woods. Py-GC/MS showed a decrease in levoglucosan, while lignin suffered some modifications with slight changes in monomeric composition reflected by the reduction of the S/G ratio. No changes were found between the two environments, and thermal modification did not give extra protection against termites and weathering.
- Thermoelectric Properties of Tetrahedrites Produced from Mixtures of Natural and Synthetic MaterialsPublication . Santos, Beatriz; Esperto, Luís; Figueira Vasques, Isabel; Mascarenhas, João; Lopes, E.B.; Salgueiro, Rute; Silva, Teresa; Correia, Jose B.; de Oliveira, Daniel Pipa Soares; Pereira Gonçalves, Antonio; Neves, FilipeABSTRACT: Thermoelectric materials have considerable potential in the mitigation of the global energy crisis, through their ability to convert heat into electricity. This study aims to valorize natural resources, and potentially reduce production costs, by incorporating tetrahedrite-tennantite (td) ores from the Portuguese Iberian Pyrite Belt into synthetic samples. The ore samples were collected in a mine waste at Barrig & atilde;o and as "dirty-copper" pockets of ore from the Neves Corvo mine. Subsequently, high-energy ball milling and hot pressing were employed in the production of thermoelectric materials. These are characterized by XRD, SEM/EDS, and thermoelectrical properties. The complete dissolution of the dump material sulfides with the synthetic tetrahedrite constituents led to an increase in the amount of the tetrahedrite-tennantite phase, which was made up of a tetrahedrite-tennantite-(Fe) solid solution. The thermoelectric characterization of these materials is provided, revealing that most of the combined synthetic ore samples displayed better results than the pristine tetrahedrite, mostly due to higher Seebeck coefficient values. Furthermore, the best thermoelectric performance is achieved with 10% of ore, where a power factor of 268 mu W.K-2.m-1 is reached at room temperature.