Materiais para a Energia - ME
Permanent URI for this community
Browse
Browsing Materiais para a Energia - ME by Field of Science and Technology (FOS) "Engenharia e Tecnologia::Engenharia Química"
Now showing 1 - 6 of 6
Results Per Page
Sort Options
- Enhancing Corrosion Resistance of Al-Mg Alloys through Biomineralization [Resumo]Publication . Marques, Maria João; Fori, Benoit; Mercier, Dimitri; Seyeux, Antoine; Zanna, Sandrine; Marcus, Philippe; BASSEGUY, RegineABSTRACT: In recent decades, new emerging microbiological technologies have been studied, based on the recognition that microorganisms can inhibit corrosion by different mechanisms, the so-called MICI (microbiologically influenced corrosion inhibition), opening up different lines of research. In this context, biomineralization has been attracting the attention of researchers, with an increasing number of studies showing that different types of mineralized layers formed on metal surfaces can reduce the risk of corrosion.
- Exploring Marine Biomineralization on the Al-Mg Alloy as a Natural Process for In Situ LDH Growth to Improve Corrosion ResistancePublication . Marques, Maria João; Mercier, Dimitri; Seyeux, Antoine; Zanna, Sandrine; Tenailleau, Christophe; Duployer, Benjamin; Jeannin, Marc; Marcus, Philippe; Basséguy; BASSEGUY, RegineABSTRACT: This study provides a detailed characterization of the AA5083 aluminum alloy, surface, and interface over 6 months of immersion in seawater, employing techniques such as SEM/EDX, GIXRD, mu-Raman and XPS. The purpose was to evaluate the evolution of the biomineralization process that occurs on the Al-Mg alloy. By investigating the specific conditions that favor the in situ growth of layered double hydroxide (LDH) during seawater immersion as a result of biomineralization, this research provides insights into marine biomineralization, highlighting its potential as an innovative and sustainable strategy for corrosion protection.
- La biominéralisation comme bioinspiration pour le développement de solutions anti-corrosion [Resumo]Publication . BASSEGUY, Regine; Marques, Maria JoãoRÉSUMÉ: Dans le domaine de la corrosion, la nature se révèle être une source d’inspiration pour développer de nouveaux concepts de protection verts. En effet, il est largement reconnu que les micro-organismes sont capables non seulement d’accélérer la orrosion mais ils peuvent également l'inhiber et/ou protéger les matériaux qu’ils colonisent [1]. Ce constat a ainsi conduit à proposer des stratégies à base microbienne pour l'inhibition de la corrosion des métaux. En particulier, le processus de biominéralisation à la surface des matériaux, tels que les pierres, le béton et divers métaux, a récemment été considéré comme une nouvelle approche respectueuse de l'environnement pour produire des couches protectrices [2-3]. Jusqu’à peu, la majorité des publications concernaient les aciers, matériaux historiquement utilisés dans les infrastructures. Au cours des dernières années, de nouveaux matériaux tels que les alliages d'aluminium, sont apparus sur le marché comme des alternatives possibles. Dans le cas spécifique de l'alliage Al-Mg, souvent utilisé dans les applications marines, peu d'études ont évalué l'influence de la biominéralisation sur la corrosion [4-6]. L'objectif de cette présentation est de montrer, à travers deux études de cas, comment la précipitation minérale influencée par l’activité microbienne sur les matériaux métalliques peut être envisagée comme une nouvelle approche pour le développement de solutions anti-corrosion.
- New proton exchange membranes based on ionic liquid doped chitosanPublication . Naffati, Naima; Teixeira, Fatima; Teixeira, António Paulo Silva; Rangel, Carmen M.ABSTRACT: The development of new proton exchange membranes (PEM) for electrochemical devices have attracted researcher's attention in the pursuit for more sustainable and cost-effective technologies for clean energy production and conversion. In this work, new doped chitosan (CS) membranes were prepared by the casting method. Chitosan is an abundant, biodegradable and non-toxic material, and as a membrane, a sustainable and cheaper alternative to those perfluorinated and commonly used, such as Nafion. Three different ionic liquids were employed as dopants, ([EMIM][OTf], [EMIM][FSI] and [MIMH][HSO4]), in various concentrations and up to 50 wt% load. The new membranes were characterized by ATR-FTIR, thermogravimetry, using TGA and DSC techniques to assess their thermal properties, and by SEM, to analyse their surface morphology. Proton conduction properties of the new membranes were assessed by Electrochemical Impedance Spectroscopy (EIS). The new doped membranes showed an increase in the proton conduction compared with pristine chitosan membranes. The incorporation of ionic liquids into chitosan membranes improved their proton conductivity and thermal properties, with [EMIM][OTf] and [MIMH][HSO4] showing the most promising results. A 2-fold increment in the proton conduction was generally observed with the increase of the temperature from 30 to 60 degrees C. The best proton conductivity was found at 60 degrees C for the membrane doped with [EMIM][OTf], with a value of 47 mS.cm(-1).
- NEWS4CSP Project: New coatings approaches to protect metallic materials from heat transfer fluids [Poster]Publication . Cunha Diamantino, Teresa; Pedrosa, Fátima; Paiva Luís, Teresa; Ferreira da Silva, Eduardo; Gonçalves, Francisco; Monteiro, Renato; Cardoso, João
- Tetrahedrite Nanocomposites for High Performance ThermoelectricsPublication . Coelho, Rodrigo; Moço, Duarte; Sá, Ana; Luz, Paulo P. da; Neves, Filipe; Cerqueira, Maria de Fátima; Lopes, E.B.; Brito, Francisco; Mangelis, Panagiotis; Kyratsi, Theodora; Pereira Gonçalves, AntonioABSTRACT: Thermoelectric (TE) materials offer a promising solution to reduce green gas emissions, decrease energy consumption, and improve energy management due to their ability to directly convert heat into electricity and vice versa. Despite their potential, integrating new TE materials into bulk TE devices remains a challenge. To change this paradigm, the preparation of highly efficient tetrahedrite nanocomposites is proposed. Tetrahedrites were first prepared by solid state reaction, followed by the addition of MoS2 nanoparticles (NPs) and hot-pressing at 848 K with 56 MPa for a duration of 90 min to obtain nanocomposites. The materials were characterized by XRD, SEM-EDS, and Raman spectroscopy to evaluate the composites' matrix and NP distribution. To complement the results, lattice thermal conductivity and the weighted mobility were evaluated. The NPs' addition to the tetrahedrites resulted in an increase of 36% of the maximum figure of merit (zT) comparatively with the base material. This increase is explained by the reduction of the material's lattice thermal conductivity while maintaining its mobility. Such results highlight the potential of nanocomposites to contribute to the development of a new generation of TE devices based on more affordable and efficient materials.