Repository logo
 
Loading...
Profile Picture

Search Results

Now showing 1 - 10 of 13
  • Impacts of large amounts of wind power on design and operation of power systems, results of IEA collaboration
    Publication . Holttinen, Hannele; Meibom, Peter; Orths, Antje; Lange, Bernhard; O'Malley, Mark; Tande, John O.; Estanqueiro, Ana; Gomez, Emilio; Soder, Lennart; Strabac, Goran; Smith, J. Charles; Van Hulle, Frans
    There are dozens of studies made and ongoing related to wind integration. However, the results are not easy to compare. IEA WIND R&D Task 25 on ‘Design and Operation of Power Systems with Large Amounts of Wind Power’ collects and shares information on wind generation impacts on power systems, with analyses and guidelines on methodologies. In the state-of-the-art report (October, 2007), and the fi nal report of the 3 years period (July, 2009) the most relevant wind power grid integration studies have been analysed especially regarding methodologies and input data. Several issues that impact on the amount of wind power that can be integrated have been identifi ed. Large balancing areas and aggregation benefi ts of wide areas help in reducing the variability and forecast errors of wind power as well as help in pooling more cost effective balancing resources. System operation and functioning electricity markets at less than day-ahead time scales help reduce forecast errors of wind power. Transmission is the key to aggregation benefi ts, electricity markets and larger balancing areas. Best practices in wind integration studies are described. There is also benefi t when adding wind power to power systems: it reduces the total operating costs and emissions as wind replaces fossil fuels and this should be highlighted more in future studies.
  • Wind and solar curtailment
    Publication . Lew, Debra; Bird, Lori; Milligan, Michael; Speer, Bethany; Wang, Xi; Carlini, Enrico Maria; Estanqueiro, Ana; Flynn, Damian; Gomez-Lázaro, E.; Holttinen, Hannele; Menemenlis, Nickie; Orths, Antje; Smith, J. Charles; Soder, Lennart; Sorensen, Poul; Altiparmakis, Argyrios; Yoh, Yasuda
    High penetrations of wind and solar generation on power systems are resulting in increasing curtailment. Wind and solar integration studies predict increased curtailment as penetration levels grow. This paper examines experiences with curtailment on bulk power systems internationally. It discusses how much curtailment is occurring, how it is occurring, why it is occurring, and what is being done to reduce curtailment. This summary is produced as part of the International Energy Agency Wind Task 25 on Design and Operation of Power Systems with Large Amounts of Wind Power.
  • Design and operation of power systems with large amounts of wind power, first results of IEA collaboration
    Publication . Holttinen, Hannele; Meibom, Peter; Orths, Antje; Hulle, Frans van; Ensslin, Cornel; Hofmann, Lutz; McCann, John; Pierik, Jan; Tande, John O.; Estanqueiro, Ana; Soder, Lennart; Strbac, Goran; Parsons, Brian; Smith, J. Charles; Lemstrom, Bettina
    An international forum exchange of knowledge of power systems impacts of wind power has been formed under the IEA Implementing Agreement on Wind Energy. The task 'Design and Operation of Power Systems with Large Amounts of Wind Power Production' will analyse existing case studies from different power systems. There is a multitude of studies made and ongoing related to cost of wind integration. However, the results are not easy to compare. This paper summarises the results from 10 countries and outlines the sudies made at European Wind Energy Association and the European system operators UCTE and ETSO. A more in-depth review of the studies is needed to draw conclusions on the range of integration costs for wind power. State-of-the art review process will seek for reasons behind the wide range of results for costs of wind integration-definitions for wind penetration, reserves and costs; different power system and load characteristics and operational rules; underlying assumptions on variability of wind etc.
  • C-E (curtailment - Energy share) map: An objective and quantitative measure to evaluate wind and solar curtailment
    Publication . Yasuda, Yoh; Bird, Lori; Carlini, Enrico Maria; Eriksen, Peter Børre; Estanqueiro, Ana; Flynn, Damian; Fraile, Daniel; Lázaro, Emilio Gómez; Martín-Martínez, Sergio; Hayashi, Daisuke; Holttinen, Hannele; Lew, Debra; McCann, John; Menemenlis, Nickie; Miranda, Raul; Orths, Antje; Smith, J. Charles; Taibi, Emanuele; Vrana, Til Kristian
    ABSTRACT: s the share of VRE (variable renewable energy) has grown rapidly, curtailment issues have arisen worldwide. This paper evaluates and compares curtailment situations in selected countries using an objective and quantitative evaluation tool named the "C-E map " (curtailment-energy share map). The C-E map is a correlation map between curtailment ratios that mean curtailed wind (or solar) energy per available energy and energy shares of wind (or solar). The C-E map can draw a historical trend curve in a given country/area, as an at-a-glance tool to enable historical and/or international comparison. The C-E map also can classify the given countries/areas into several categories, according to the current levels of curtailment ratio and historical trends. The C-E map helps institutional and objective understanding of curtailment for non-experts including policy makers.
  • Impacts of large amounts of wind power on design and operation of power systems, results of IEA collaboration
    Publication . Holttinen, Hannele; Meibom, Peter; Orths, Antje; O'Malley, Mark; Ummels, Bart C.; Tande, John O.; Estanqueiro, Ana; Gomez, Emilio; Smith, J. Charles; Ela, Erik
    There are a multitude of studies made and ongoing related to cost of wind integration. However, the results are not easy to compare. An international forum for exchange of knowledge of power system impacts of wind power has been formed under the IEA Implementing Agreement on Wind Energy. IEA WIND R&D Task 25 on "Design and Operation of Power Systems with Large Amounts of Wind Power" has produced a state-of-the-art report in October 2007, where the most relevant wind power grid integration studies are analysed especially regarding methodologies and input data. This paper summarises the results from 18 case studies with discussion on the differences in the methodology as well as issues that have been identified to impact the cost of wind integration.
  • Design and operation of power systems with large amounts of wind power : Final report, Phase one 2006-08, IEA WIND Task 25
    Publication . Holttinen, Hannele; Meibom, Peter; Orths, Antje; Van Hulle, Frans; Lange, Bernhard; O'Malley, Mark; Smith, J. Charles; Estanqueiro, Ana; Ricardo, João; Ummels, Bart C.; Gomez, Emilio; Matos, M.; Soder, Lennart; Shakoor, Anser; Strbac, Goran; Tande, John O.; Pierik, Jan; Ela, Erik; Milligan, Michael
    There are already several power systems coping with large amounts of wind power. High penetration of wind power has impacts that have to be managed through proper plant interconnection, integration, transmission planning, and system and market operations. This report is a summary of case studies addressing concerns about the impact of wind power s variability and uncertainty on power system reliability and costs. The case studies summarized in this report are not easy to compare due to different methodology and data used, as well as different assumptions on the interconnection capacity available. Integration costs of wind power need to be compared to something, like the production costs or market value of wind power, or integration cost of other production forms. There is also benefit when adding wind power to power systems: it reduces the total operating costs and emissions as wind replaces fossil fuels. Several issues that impact on the amount of wind power that can be integrated have been identified. Large balancing areas and aggregation benefits of large areas help in reducing the variability and forecast errors of wind power as well as help in pooling more cost effective balancing resources. System operation and working electricity markets at less than day-ahead time scales help reduce forecast errors of wind power. Transmission is the key to aggregation benefits,electricity markets and larger balancing areas. From the investigated studies it follows that at wind penetrations of up to 20 % of gross demand (energy), system operating cost increases arising from wind variability and uncertainty amounted to about 1 4 /MWh. This is 10 % or less of the wholesale value of the wind energy.
  • Transmission planning for wind energy in the United States and Europe: status and prospects
    Publication . Smith, J. Charles; Osborn, D.; Zavaldi, R.; Lasher, W.; Gomez-Lázaro, E.; Estanqueiro, Ana; Trotscher, Thomas; Tande, J.; Korpås, Magnus; Van Hulle, Frans; Holttinen, Hannele; Orths, Antje; Burke, Daniel; O'Malley, Mark; Dobschinski, Jan; Rawn, B.; Gibescu, Madeline; Dale, L.
    This paper provides an overview ofmajor transmission planning activities related to wind integration studies in the United States and Europe. Transmission planning for energy resources is different from planning for capacity resources. Those differences are explained, and illustrated with examples from several regions of the United States and Europe. Transmission planning for wind is becoming an iterative process consisting of generation expansion planning, economic-based transmission planning, system reliability analysis, and wind integration studies. A brief look at the policy environment in which this activity is taking place is provided. A set of coherent and collaborative transmission planning, siting, and permitting policies and cost allocation method must be developed to achieve the intended objectives. The scale of transmission development envisioned for this purpose will require unprecedented cooperation across multiple jurisdictional boundaries.
  • Flexibility chart: Evaluation on diversity of flexibility in various areas
    Publication . Yasuda, Yoh; Ardal, Atle Rygg; Carlini, Enrico Maria; Estanqueiro, Ana; Flynn, Damian; Gomez-Lázaro, E.; Holttinen, Hannele; Kiviluoma, Juha; Van Hulle, Frans; Kondoh, Junji; Lange, Bernhard; Menemenlis, Nickie; Milligan, Michael; Orths, Antje; Smith, J. Charles; Soder, Lennart
    This paper evaluates various aspects of flexibility in power systems worldwide within the multi-country study framework of IEA Wind Task 25, including grid components and actions which have been favoured for enhancing flexibility in different areas/countries/regions, and how TSOs/ISOs/ utilities intend to manage variable generation in their operating strategies. One methodology to evaluate the diversity of flexibility sources is a "flexibility chart”, which can illustrate several flexibility parameters (e.g. hydro, CCGT, CHP, interconnection) in a polygonal radar (spider) chart.
  • System impact studies for near 100% renewable energy systems dominated by inverter based variable generation
    Publication . Holttinen, Hannele; Kiviluoma, Juha; Flynn, Damian; Smith, J. Charles; Orths, Antje; Eriksen, Peter Børre; Cutululis, Nicolaos Antonio; Söder, Lennart; Korpås, Magnus; Estanqueiro, Ana; MacDowell, Jason; Tuohy, Aidan; Vrana, Til Kristian; O'Malley, Mark
    ABSTRACT: The demand for low carbon energy calls for close to 100% renewable power systems, with decarbonization of other energy sectors adding to the anticipated paradigm shift. Rising levels of variable inverter-based renewable energy sources (VIBRES) are prompting questions about how such systems will be planned and operated when variable renewable generation becomes the dominant technology. Here, we examine the implications of this paradigm shift with respect to planning, operation and system stability, also addressing the need for integration with other energy vectors, including heat, transport and Power-to-X. We highlight the knowledge gaps and provide recommendations for improved methods and models needed as power systems transform towards 100% VIBRES.
  • Summary of experiences and studies for wind integration: IEA Wind Task 25 
    Publication . Holttinen, Hannele; Robitaille, André; Orths, Antje; Pineda, Ivan; Lange, Bernhard; Carlini, Enrico Maria; O’Malley, Mark; Dillon, Jody; Tande, John Olav; Estanqueiro, Ana; Gomez-Lázaro, E.; Soder, Lennart; Milligan, Michael; Smith, J. Charles
    IEA WIND R&D Task 25 on “Design and Operation of Power Systems with Large Amounts of Wind Power” collects and shares information on wind generation impacts on power systems, with analyses and guidelines on methodologies. This paper summarizes the main results from the report published on January 2013 describing experience of wind integration as well as the most relevant wind power grid integration studies in the 15 participating countries. The studies build on the already significant experience in integrating wind power in power systems addressing concerns about the impact of wind power’s variability and uncertainty on power system security of supply and costs as well as grid reinforcement needs. The mitigation of wind power impacts includes more flexible operational methods, incentivising flexibility in other generating plants, increasing interconnection to neighbouring regions, and application of demand-side flexibility. Electricity storage is still not as cost effective in larger power systems as other means of flexibility, but is already seeing initial applications in places with limited transmission.