Repository logo
 

Search Results

Now showing 1 - 3 of 3
  • Manufacturing and Thermal Shock Resistance of 3D-Printed Porous Black Zirconia for Concentrated Solar Applications
    Publication . Oliveira, Fernando Almeida Costa; Sardinha, Manuel; Galindo, José; Rodríguez, José; Cañadas, Inmaculada; Leite, Marco; Fernandes, Jorge Cruz
    ABSTRACT: A novel approach for manufacturing porous materials, foreseen as solar receivers for concentrated sun radiation, used in the power tower technology is presented. In such applications, materials are subjected to steep thermal gradients and thousands of cycles. Yet, materials consisting of honeycombs and ceramic foams showed insufficient thermal performance. By using the fused filament fabrication process, one can design printed parts meeting the requirements for solar receivers, namely dark color and high solar absorptance. This exploratory study unveils data on the retained crushing strength of newly developed 3D-printed porous Black Zirconia cubes after thermal cycling under similar conditions to those experienced by volumetric receivers and catalyst substrates for solar fuels (H-2 and/or CO) production via the thermochemical cycle. Unlike dense ceramics, the resistance to thermal shock of 3D-printed cubes underwent a gradual decrease with the increase in the thermal gradient. The thermal shock cycles were performed between 800 degrees C and 1100, 1200, and 1300 degrees C, corresponding to a Delta T of 300, 400, and 500 K, respectively. Additionally, water quenching tests were performed at Delta T = 300 K up to 400 K. Crushing strength measurements carried out to evaluate the retained mechanical strength after exposure up to 100 cycles showed that the Black Zirconia cubes can withstand thermal gradients up to at least 400 K.
  • Thermochemical performance of ceria coated-macroporous 3D-printed black zirconia structures for solar CO/H2 fuels production
    Publication . Oliveira, Fernando; Barreiros, Maria Alexandra; Sardinha, Manuel; Leite, Marco; Fernandes, Jorge; Abanades, Stéphane
    ABSTRACT: The use of macroporous structured ceria for the solar thermochemical splitting of CO2 and H2O to produce clean fuels through two-step redox cycles was investigated. The research aimed to assess the reactivity of 3D-printed black zirconia gyroid structures coated with a microporous layer of pure CeO2 for producing CO and H2. Such porous designs are intended to increase both the absorption of solar radiation and the available surface area for the solid-gas reaction. It was observed that the structure degraded more at the top of the reactor cavity, where the formation of CexZr1-xO2 solid solutions occurred at the coating/substrate interface. Besides, the porous ceria structure remained after redox cycles in the samples not directly exposed to solar radiation. Consequently, the solar reactor achieved CO and H2 production rates of up to 5.4 and 1.9 mL min-1 g-1 with fuel yield over 0.2 mmol g-1, and the material maintained its performance over several consecutive cycles without any loss of reactivity. This indicates a strong potential for producing solar fuels at a large facility using custom 3D-printed ceria-coated structures.
  • Mechanical Performance of Ceria-Coated 3D-Printed Black Zirconia Cellular Structures After Solar Thermochemical CO/H2 Fuel Production Cycles
    Publication . Oliveira, Fernando; Sardinha, Manuel; Justino Netto, Joaquim Manoel; Leite, Marco; Farinha, Miguel; Barreiros, Maria Alexandra; Abanades, Stéphane; Fernandes, Jorge
    ABSTRACT: Solar fuels production requires developing redox active materials with porous structures able to withstand thermochemical cycles with enhanced thermal stability under concentrated solar irradiation conditions. The mechanical performance of 3D-printed, macroporous black zirconia gyroid structures, coated with redox-active ceria, was assessed for their suitability in solar thermochemical cycles for CO2 and H2O splitting. Experiments were conducted using a 1.5 kW solar furnace to supply the high-temperature concentrated heat to a windowed reaction chamber to carry out thermal redox cycling under realistic on-sun conditions. The ceria coating on ceramic structures improved the thermal stability and redox efficiency while minimizing the quantity of the redox material involved. Crushing strength measurements showed that samples not directly exposed to the concentrated solar flux retained their mechanical performance after thermal cycling (similar to 10 MPa), while those near the concentrated solar beam focus exhibited significant degradation due to thermal stresses and the formation of CexZr1-xO2 solid solutions (similar to 1.5 MPa). A Weibull modulus of 8.5 was estimated, marking the first report of such a parameter for fused filament fabrication (FFF)-manufactured black zirconia with gyroid architecture. Failure occurred via a damage accumulation mechanism at both micro- and macro-scales. These findings support the viability of ceria-coated cellular ceramics for scalable solar fuel production and highlight the need for optimized reactor designs.