Repository logo
 
Loading...
Profile Picture
Person

Nunes, Helder Xavier

Search Results

Now showing 1 - 2 of 2
  • Rehydrogenation of sodium borates to close the NaBH4-H2 cycle: a review
    Publication . Nunes, Helder Xavier; Silva, Diogo; Rangel, C. M.; Pinto, A.M.F.R.
    ABSTRACT: In 2007, the US Department of Energy recommended a no-go on NaBH4 hydrolysis for onboard applications; however, the concept of a NaBH4-H2-PEMFC system has the potential to become a primary source for on-demand power supply. Despite the many efforts to study this technology, most of the published papers focus on catalytic performance. Nevertheless, the development of a practical reaction system to close the NaBH4-H2 cycle remains a critical issue. Therefore, this work provides an overview of the research progress on the solutions for the by-product rehydrogenation leading to the regeneration of NaBH4 with economic potential. It is the first to compare and analyze the main types of processes to regenerate NaBH4: thermo-, mechano-, and electrochemical. Moreover, it considers the report by Demirci et al. on the main by-product of sodium borohydride hydrolysis. The published literature already reported efficient NaBH4 regeneration; however, the processes still need more improvements. Moreover, it is noteworthy that a transition to clean methods, through the years, was observed.
  • Scale-up of a clean hydrogen production system through the hydrolysis of sodium borohydride for off-grid applications
    Publication . Silva, Diogo; Nunes, Helder Xavier; Rangel, Carmen M.; Pinto, A. M. F. R.
    ABSTRACT: Hydrogen is considered a promising energy vector with the potential to replace fossil fuels, and sodium borohydride serves as an effective energy carrier capable of releasing hydrogen (H2) for off-grid applications. However, the hydrolysis of sodium borohydride has only matured at laboratory-scale. Therefore, the scale-up of a laboratory reactor was designed and manufactured to study the effect of larger H2 production. For that, the effect of inhibitor NaOH concentration and water quality were studied. Experiments using 3 wt% NaOH showed overall better performance than those using 1 wt%. Additionally, experiments using tap water - scarcely reported in the literature - demonstrated performance equal to or better than that achieved with distilled water. These results are indicative of a possible significant reduction in the H2 production cost through this method.