Repository logo
 
Loading...
Profile Picture

Search Results

Now showing 1 - 10 of 17
  • Effect of marine microbial activity in corrosion inhibition of 5083 aluminium alloy [Comunicação oral]
    Publication . Marques, Maria João; Mercier, Dimitri; Seyeux, Antoine; Zanna, Sandrine; Marcus, Philippe; Basseguy, Regine
    ABSTRACT: Microbiologically influenced corrosion inhibition (MICI), can be considered as a new environmentally friendly strategy for corrosion inhibition. Nevertheless, at present, most of the findings in MICI research are obtained under optimized laboratory conditions, generally involving a single microorganism. To upgrade the knowledge in this research field and increase the potential applications, more studies under real conditions are needed, since environmental complexity and biological diversity coexist in field environments impacting the corrosion process of metal surfaces. In this context, one of the main objectives of the MICOATEC project (“New concept of Microbially Inspired anticorrosion coating technology”) is to understand the microbially induced formation of a protective layer on the Al-Mg surface during exposure in marine field. The present work is part of this study.
  • Aluminium en milieu marin : protection par la biocorrosion [Resumo]
    Publication . Jaume, Julien; Basseguy, Regine; Marques, Maria João; Délia, Marie-Line
    ABSTRACT: Pour être utilisés en milieu marin, les matériaux doivent être particulièrement résistant à la corrosion, du fait de la composition chimique de l’eau de mer (concentration en chlorure élévée, …) mais également de la présence des microorganismes. En effet, les microorganismes sont connus pour catalyser la corrosion ou l’inhiber [1,2]. Ces phénomènes antagonistes sont regroupés sous le terme de « Microbiologically Influenced Corrosion » (MIC) et « MIC Inhibition » (MICI). Les alliages d’aluminium Al-Mg, série 5000 qui présentent une bonne résistance mécanique mais également à la corrosion, sont un matériau de choix pour les structures immergées dans l’eau de mer.
  • Nouveau concept de technologie de revêtement anticorrosion inspirée des systèmes microbiens: Projet MICOATEC [Comunicação oral]
    Publication . Marques, Maria João; Jaume, Julien; Diderot, Anthony; Délia, Marie-Line; Basseguy, Regine
    RÉSUMÉ: Parmi les stratégies actuellement utilisées pour protéger les matériaux métalliques de la corrosion, et ainsi accroître leur durabilité, les traitements de conversion et les revêtements peuvent être considérés comme les alternatives les plus efficaces et les plus rentables. Ces techniques doivent cependant respecter une réglementation de plus en plus contraignante telle que REACH. Par ailleurs, dans le domaine des interactions micro-organismes/ matériaux conducteurs, il a été mis en évidence que non seulement les micro-organismes peuvent dans certains cas accélérer la corrosion (biocorrosion ou MIC) et dans d’autres l’inhiber protégeant alors le matériau sous-jacent (MIC Inhibition). Dans ce contexte, le projet ANR MICOATEC repose sur le constat que les interactions entre un alliage d’aluminium (AA 5083) et des microorganismes du milieu marin conduisent à la formation d’une couche protectrice contre la corrosion (Figure 1). MICOATEC ambitionne de développer, via une stratégie biomimétique, un nouveau type de procédé pour produire des revêtements anticorrosion.
  • Marine Microorganisms and Metal interaction: The Start Point of a New Bio solution for Corrosion Protection [Resumo]
    Publication . Marques, Maria João; Mercier, Dimitri; Seyeux, Antoine; Zanna, Sandrine; Marcus, Philippe; Basseguy, Regine
  • The positive impact of biomineralization for marine corrosion protection of AA5083 alloy
    Publication . Marques, Maria João; Jaume, Julien; Mercier, Dimitri; Seyeux, Antoine; Zanna, Sandrine; Basseguy, Regine; Marcus, Philippe
    ABSTRACT: This paper investigates, using surface characterisation techniques (SEM, XPS and ToF-SIMS), the impact of marine biological activity on AA5083 corrosion behaviour during seawater immersion. Different solar exposure (light vs. dark) results in distinct marine fouling development, influencing surface modifications. On the dark side, an Al/Mg oxide/hydroxide layer forms, allowing Cl - penetration. Pitting attack is observed after immersion. For the light side, a dual layer structure forms, with a hydrated Mg rich outer layer, showing barrier effect to Cl - penetration. No localized corrosion occurs. A comparison with abiotic conditions demonstrates the corrosion inhibiting effect of marine biological activity on AA5083.
  • Marine biomineralization for enhanced corrosion resistance: Insights from the ANR MICOATEC project [Poster]
    Publication . Marques, Maria João; Nkoua, C.; Jaume, Julien; Diderot, Anthony; Mercier, Dimitri; Seyeux, Antoine; Délia, Marie-Line; Silva, S. da; Fori, B.; Blanc, C.; Zanna, Sandrine; Marcus, Philippe; Basseguy, Regine
    ABSTRACT: Concerns about marine pollution and ecological threats caused by traditional corrosion protection technologies have driven the development of new environmentally friendly anti-corrosion solutions. In recent years, it became clear that microorganisms have the potential to positively impact corrosion behavior, a phenomenon known as MICI (microbiologically influenced corrosion inhibition) [1,2]. Although research on MICI mechanisms is still in the beginning, two main mechanisms have been outlined: direct and indirect inhibition. In the first one, the microorganisms are responsible for the segregation of slow-release inhibitors or surfactants or consume oxygen, which affects the cathodic reaction process. The second one, indirect inhibition mechanism, is associated to the formation of a protective layer on the surface of the material due to metabolic activity of microorganisms. In this context, biomineralization attracted the attention of researchers as a solution to inhibit metal corrosion.
  • Interactions between marine microorganisms and metal: the start point of a new bioinspired solution for corrosion protection
    Publication . Marques, Maria João; Jaume, Julien; Diderot, Anthony; Délia, Marie-Line; Basseguy, Regine
    ABSTRACT: Among the strategies currently used to protect metallic materials from corrosion, and thus increase their durability, conversion treatments and coatings can be considered as the most efficient and cost-effective alternatives. However, these techniques must comply with increasingly stringent regulations such as REACH. On another note, in the field of interactions between microorganisms and conductive material, it has been shown that microorganisms can not only accelerate corrosion in some cases (biocorrosion or MIC) but also inhibit it in others, thus protecting the underlying material (MIC Inhibition). In this context, the MICOATEC ANR project is based on the observation that interactions between an aluminium alloy (AA5083) and microorganisms in the marine environment lead to the formation of a protective layer against corrosion. The MICOATEC project aims to develop, via a biomimetic strategy, a new type of process for producing anti-corrosion coatings. The main goal is therefore to translate the natural biotic process into an abiotic technological process for corrosion protection, without replicating the biofilm itself or incorporating active biocompounds into the coating matrix.
  • The corrosion behavior of aluminium-magnesium alloy in natural seawater: effects of the biological activity [Resumo]
    Publication . Marques, Maria João; Benedetti, A.; Castelli, F.; Delucchi, Marina; Faimali, Marco; Delsante, S.; Valenza, F.; Garaventa, F.; Pavanello, G.; Losurdo, M.; Basseguy, Regine
    ABSTRACT: Concerning the corrosion in seawater environments, microorganisms can cause corrosion (Microbiologically Influenced Corrosion - MIC) [1], but also inhibit it or protect against it, a process known as MIC Inhibition (MICI) [2-3]. Corrosion studies of Al-Mg alloys of the 5XXX series, widely used in the shipbuilding industry, requires wider comprehension regarding the impact of the microbial activity [4-7]. Recent studies indicate that the biological activity tends to mitigate the Al alloy corrosion processes [8-11]. The objective of the present study is to assess the influence of natural seawater and the related biological activity on the resistance of the AA5083 Al-Mg alloy by the means of immersion experiments in natural (biotic) vs control (abiotic) seawater. Ennoblement of the open circuit potential (OCP) on Stainless steel (SS) probes was used to monitor the biofilm growth [12].
  • Surface modification of 5083 aluminum-magnesium induced by marine microorganisms
    Publication . Jaume, Julien; Marques, Maria João; Délia, Marie-Line; Basseguy, Regine
    ABSTRACT: The influence of microorganisms from a salt marsh in the surface modification of 5083 aluminum alloy (Al-Mg) in seawater was evaluated. An immersion test performed for 50 days in biotic and abiotic conditions, with electrochemical monitoring and surface/cross-section characterization by SEM/EDX and TEM after exposure, showed that microorganisms induced the formation of a homogenous layer on the Al-Mg surface. This layer, which proved to be composed of a doublestructure: a dense, amorphous inner layer and a more porous outer layer, was demonstrated to influence the corrosion resistance of the Al-Mg alloy in seawater.
  • Microbial action as an inspiring tool to propose innovative corrosion protection processes [Comunicação oral]
    Publication . Basseguy, Regine; Marques, Maria João
    ABSTRACT: Among the strategies employed to protect metallic materials, coatings can be considered as one of the most successful and cost-effective alternatives to increase the service lifetime of metallic structures, particularly in industries that are continuously exposed to changing and hard weather conditions such as shipbuilding, automobile, aerospace, marine and oil & gas energy infrastructures. However, towards a more constraining legislation as REACH, the surface treatment & coating Industry is at the forefront in developing innovative and even more sustainable products.