Repository logo
 
Loading...
Profile Picture
Person

Pereira Gonçalves, Antonio

Search Results

Now showing 1 - 3 of 3
  • Simulation, Structural, Thermal and Mechanical Properties of the FeTiTaVW High Entropy Alloy
    Publication . Martins, Ricardo; Gonçalves, António Pereira; Correia, J.B.; Galatanu, Andrei; Alves, E.; Tejado, Elena; Pastor, Jose Ygnacio; Dias, Marta
    ABSTRACT: Developing new materials to be applied in extreme environments is an opportunity and a challenge for the future. High entropy alloys are new materials that seem promising approaches to work in nuclear fusion reactors. In this work, FeTaTiVW high entropy alloys were developed and characterized with Molecular Dynamic and Hybrid Molecular Dynamic Monte Carlo simulations. The simulation results show that phase separation originates a lower potential energy per atom and a high level of segregation compared to those of a uniform solid solution. Moreover, the experimental diffractogram of the milled powder shows the formation of a body-centred cubic-type structure and the presence of TiO2. In addition, the microstructure of the consolidated material evidenced three phases: W-rich, Ti-rich, and a phase with all the elements. This phase separation observed in the microstructure agrees with the Hybrid Molecular Dynamic Monte Carlo simulation. Moreover, the consolidated material's thermal conductivity and specific heat are almost constant from 25 degrees C to 1000 degrees C, and linear expansion increases with increasing temperature. On the other hand, specific heat and thermal expansion values are in between CuCrZr and W values (materials chosen for the reactor walls). The FeTaTiVW high entropy alloy evidences a ductile behaviour at 1000 degrees C. Therefore, the promising thermal properties of this system can be attributed to the multiple phases and systems with different compositions of the same elements, which is exciting for future developments.
  • Simulation and study of the milling parameters on CuFeTaTiW multicomponent alloy
    Publication . Martins, Ricardo; Gonçalves, António Pereira; Correia, J.B.; Galatanu, Andrei; Alves, E.; Dias, Marta
    ABSTRACT: The CuFeTaTiW multicomponent alloy has been devised as an interlayer thermal barrier in nuclear fusion re-actors. In order to predict the phase constitution of this alloy, two different lines of work were performed: (a) simulation using Molecular dynamics and Monte Carlo and (b) study of the influence of mechanical alloying parameters on the structures formed. The simulation results show that the most stable structure is achieved starting from a bcc type-structure and using Monte Carlo simulation. In fact, in these conditions the separation into two bcc phases Fe-Ta-W and Cu-Ti is predicted at room temperature. However, the experimental preparation of the materials with mechanical alloying revealed that from 2 h of milling a single bcc phase is formed. The structure of the milled powder was not much influenced by the amount of the process control agent and the by the size of the W starting particles, but generally there was formation of Ta2H from the reaction between the powders and the process control agent.
  • Hybrid molecular dynamic Monte Carlo simulation and experimental production of a multi-component Cu-Fe-Ni-Mo-W alloy
    Publication . Dias, Marta; Almeida Carvalho, Patricia; Gonçalves, António Pereira; Alves, E.; Correia, J.B.
    ABSTRACT: High-entropy alloys are a class of materials intensely studied in the last years due to their innovative properties. Their unconventional compositions and chemical structures hold promise for achieving unprecedented combinations of mechanical properties. The Cu-Fe-Ni-Mo-W multicomponent alloy was studied using a combination of simulation and experimental production to test the possibility of formation of a simple solid solution. Therefore, Molecular Dynamics and hybrid Molecular Dynamic/Monte Carlo simulations from 10K up to the melting point of the alloy were analyzed together with the experimental production by arc furnace and powder milling. The Molecular Dynamics simulations starting with a bcc type-structure show the formation of a singlephase bcc solid solution type-structure, whereas using Monte Carlo one, generally produced a two-phase mixture. Moreover, the lowest potential energy was obtained when starting from a fcc type-structure and using Monte Carlo simulation giving rise to the formation of a bcc Fe-Mo-W phase and a Cu-Ni fcc type-structure. Dendritic and interdendritic phases were observed in the sample produced by arc furnace while the milled powder evidence an separation of two phases Cu-Fe-Ni phase and W-Mo type-structures. Samples produced by both methods show the formation of bcc and a fcc type-structures. Therefore, the Monte Carlo simulation seems to be closer with the experimental results, which points to a two-phase mixture formation for the Cu-Fe-Ni-Mo-W multicomponent system.