Repository logo
 

Search Results

Now showing 1 - 5 of 5
  • Simulation, Structural, Thermal and Mechanical Properties of the FeTiTaVW High Entropy Alloy
    Publication . Martins, Ricardo; Gonçalves, António Pereira; Correia, J.B.; Galatanu, Andrei; Alves, E.; Tejado, Elena; Pastor, Jose Ygnacio; Dias, Marta
    ABSTRACT: Developing new materials to be applied in extreme environments is an opportunity and a challenge for the future. High entropy alloys are new materials that seem promising approaches to work in nuclear fusion reactors. In this work, FeTaTiVW high entropy alloys were developed and characterized with Molecular Dynamic and Hybrid Molecular Dynamic Monte Carlo simulations. The simulation results show that phase separation originates a lower potential energy per atom and a high level of segregation compared to those of a uniform solid solution. Moreover, the experimental diffractogram of the milled powder shows the formation of a body-centred cubic-type structure and the presence of TiO2. In addition, the microstructure of the consolidated material evidenced three phases: W-rich, Ti-rich, and a phase with all the elements. This phase separation observed in the microstructure agrees with the Hybrid Molecular Dynamic Monte Carlo simulation. Moreover, the consolidated material's thermal conductivity and specific heat are almost constant from 25 degrees C to 1000 degrees C, and linear expansion increases with increasing temperature. On the other hand, specific heat and thermal expansion values are in between CuCrZr and W values (materials chosen for the reactor walls). The FeTaTiVW high entropy alloy evidences a ductile behaviour at 1000 degrees C. Therefore, the promising thermal properties of this system can be attributed to the multiple phases and systems with different compositions of the same elements, which is exciting for future developments.
  • Simulation and study of the milling parameters on CuFeTaTiW multicomponent alloy
    Publication . Martins, Ricardo; Gonçalves, António Pereira; Correia, J.B.; Galatanu, Andrei; Alves, E.; Dias, Marta
    ABSTRACT: The CuFeTaTiW multicomponent alloy has been devised as an interlayer thermal barrier in nuclear fusion re-actors. In order to predict the phase constitution of this alloy, two different lines of work were performed: (a) simulation using Molecular dynamics and Monte Carlo and (b) study of the influence of mechanical alloying parameters on the structures formed. The simulation results show that the most stable structure is achieved starting from a bcc type-structure and using Monte Carlo simulation. In fact, in these conditions the separation into two bcc phases Fe-Ta-W and Cu-Ti is predicted at room temperature. However, the experimental preparation of the materials with mechanical alloying revealed that from 2 h of milling a single bcc phase is formed. The structure of the milled powder was not much influenced by the amount of the process control agent and the by the size of the W starting particles, but generally there was formation of Ta2H from the reaction between the powders and the process control agent.
  • Hybrid molecular dynamic Monte Carlo simulation and experimental production of a multi-component Cu-Fe-Ni-Mo-W alloy
    Publication . Dias, Marta; Almeida Carvalho, Patricia; Gonçalves, António Pereira; Alves, E.; Correia, J.B.
    ABSTRACT: High-entropy alloys are a class of materials intensely studied in the last years due to their innovative properties. Their unconventional compositions and chemical structures hold promise for achieving unprecedented combinations of mechanical properties. The Cu-Fe-Ni-Mo-W multicomponent alloy was studied using a combination of simulation and experimental production to test the possibility of formation of a simple solid solution. Therefore, Molecular Dynamics and hybrid Molecular Dynamic/Monte Carlo simulations from 10K up to the melting point of the alloy were analyzed together with the experimental production by arc furnace and powder milling. The Molecular Dynamics simulations starting with a bcc type-structure show the formation of a singlephase bcc solid solution type-structure, whereas using Monte Carlo one, generally produced a two-phase mixture. Moreover, the lowest potential energy was obtained when starting from a fcc type-structure and using Monte Carlo simulation giving rise to the formation of a bcc Fe-Mo-W phase and a Cu-Ni fcc type-structure. Dendritic and interdendritic phases were observed in the sample produced by arc furnace while the milled powder evidence an separation of two phases Cu-Fe-Ni phase and W-Mo type-structures. Samples produced by both methods show the formation of bcc and a fcc type-structures. Therefore, the Monte Carlo simulation seems to be closer with the experimental results, which points to a two-phase mixture formation for the Cu-Fe-Ni-Mo-W multicomponent system.
  • Improvement of Mechanical Properties with Non-Equimolar CrNbTaVW High Entropy Alloy
    Publication . Antão, Francisco; Martins, Ricardo; Correia, J.B.; Silva, R.C. da; Gonçalves, António Pereira; Tejado, Elena; Pastor, Jose Ygnacio; Alves, E.; Dias, Marta
    ABSTRACT: CrNbTaVWx with (x = 1 and 1.7) high entropy alloys have been devised for thermal barriers between the plasma-facing tungsten tiles and the copper-based heat sink in the first wall of fusion nuclear reactors. These novel materials were prepared by ball milling and consolidated by Upgrade Field Assisted Sintering Technology at 1873 K under an applied pressure of 90 MPa for 10 min. In this work, the structural and mechanical properties of these materials were evaluated. Consolidated samples presented a major phase with a bcc-type structure with lattice parameter value of 0.316 nm for CrNbTaVW and CrNbTaVW1.7 compositions. Moreover, observation of the microstructures evidences also two minor phases: Ta-Nb-Cr and Ta-V rich (in which carbon is detected). Despite the similarity in the structural properties of these two alloys, their mechanical properties are distinct. The flexural stress for the sample with higher amount of W (CrNbTaVW1.7) is higher by 50% in the 298-873 K range, with an increased strain to fracture, which can be associated with reduced brittleness caused by the additional W incorporation.
  • Damage threshold of CuCrFeTiV high entropy alloys for nuclear fusion reactors
    Publication . Dias, Marta; Magalhães, S.; Antão, Francisco; Silva, R.C. da; Gonçalves, António Pereira; Carvalho, Patricia Almeida; Correia, J.B.; Galatanu, Andrei; Alves, E.
    ABSTRACT: A CuCrFeTiV high entropy alloy was prepared and irradiated with swift heavy ions in order to check its adequacy for use as a thermal barrier in future nuclear fusion reactors. The alloy was prepared from the elemental powders by ball milling, followed by consolidation by spark plasma sintering at 1178 K and 65 MPa. The samples were then irradiated at room temperature with 300 keV Ar+ ions with fluences in the 3 x 1015 to 3 x 1018 Ar+/cm2 range to mimic neutron-induced damage accumulation during a duty cycle of a fusion reactor. Structural changes were investigated by X-ray diffraction, and scanning electron microscopy and scanning transmission electron microscopy, both coupled with X-ray energy dispersive spectroscopy. Surface irradiation damage was detected for high fluences (3 x 1018 Ar+/cm2) with formation of blisters of up to 1 mu m in diameter. Cross-sectional scanning transmission electron microscopy showed the presence of intergranular cavities only in the sample irradiated with 3 x 1018 Ar+/cm2, while all irradiation experiments produced intragranular nanometric-sized bubbles with increased density for higher Ar+ fluence. The Williamson-Hall method revealed a decrease in the average crystallite size and an increase in residual strain with increasing fluence, consistent with the formation of Ar+ bubbles at the irradiated surface.