Loading...
3 results
Search Results
Now showing 1 - 3 of 3
- Optimizing bacterial nanocellulose production from eucalyptus bark: A circular approach to wastewater management and resource recoveryPublication . Rodrigues, Ana Cristina; Martins, Daniela; Duarte, Maria Salomé; Marques, Susana; Gama, Miguel; Dourado, Fernando; Carvalho, Ricardo; Cavaleiro, AnaABSTRACT: The production cost of bacterial nanocellulose (BNC) is a major limitation to its widespread use. However, this limitation can be addressed by using alternative low-cost substrates and high-yield strains. Agro-industrial wastederived substrates offer a cost-effective and sustainable solution, but their high organic load often requires additional downstream wastewater treatments. Here, we optimized static BNC production using eucalyptus bark hydrolysate (EBH) as a low-cost carbon source and proposed a circular approach for wastewater management. Optimization was performed using response surface methodology - central composite design. The optimized EBH medium yielded a 39.7-fold increase compared to standard medium, with a maximum BNC production of 8.29 f 0.21 g/L. Fermentation wastewater only (WaF) and combined with BNC washing streams (WaW) revealed high levels of organic matter, namely chemical oxygen demand (COD) of 159.0 f 2.0 and 41.1 f 0.3 g/L, and volatile solids (VS) of 99.5 f 0.9 and 26.3 f 0.2 g/L, respectively, requiring treatment before disposal. A sequential anaerobic-aerobic digestion was investigated for wastewater treatment and valorisation. Anaerobic digestion proved to be effective in treating the wastewater: methanization percentages over 87 % were achieved, and methane productions of 486 f 2 and 544 f 30 L/kg VS were obtained from WaF and WaW, respectively. Subsequent aerobic treatment was unsuccessful in further reducing COD levels (approximately 1.5 g/L). Notably, treated wastewater was recycled into the production process up to 45 % without affecting the BNC yield. This study provides valuable insights into the optimization of BNC production from lignocellulosic biomass and the management of wastewater streams, contributing to the development of a more sustainable and economically viable process.
- Biopolymers Derived from Forest Biomass for the Sustainable Textile IndustryPublication . Dias, J. C.; Marques, Susana; Branco, Pedro C.; Rodrigues, Thomas; Torres, Cristiana A.V.; Freitas, Filomena; Evtuguin, Dmitry; Silva, CarlaABSTRACT: In line with environmental awareness movements and social concerns, the textile industry is prioritizing sustainability in its strategic planning, product decisions, and brand initiatives. The use of non-biodegradable materials, obtained from non-renewable sources, contributes heavily to environmental pollution throughout the textile production chain. As sustainable alternatives, considerable efforts are being made to incorporate biodegradable biopolymers derived from residual biomass, with reasonable production costs, to replace or reduce the use of synthetic petrochemical-based polymers. However, the commercial deployment of these biopolymers is dependent on high biomass availability and a cost-effective supply. Residual forest biomass, with lignocellulosic composition and seasonably available at low cost, constitutes an attractive renewable resource that might be used as raw material. Thus, this review aims at carrying out a comprehensive analysis of the existing literature on the use of residual forest biomass as a source of new biomaterials for the textile industry, identifying current gaps or problems. Three specific biopolymers are considered: lignin that is recovered from forest biomass, and the bacterial biopolymers poly(hydroxyalkanoates) (PHAs) and bacterial cellulose (BC), which can be produced from sugar-rich hydrolysates derived from the polysaccharide fractions of forest biomass. Lignin, PHA, and BC can find use in textile applications, for example, to develop fibers or technical textiles, thus replacing the currently used synthetic materials. This approach will considerably contribute to improving the sustainability of the textile industry by reducing the amount of non-biodegradable materials upon disposal of textiles, reducing their environmental impact. Moreover, the integration of residual forest biomass as renewable raw material to produce advanced biomaterials for the textile industry is consistent with the principles of the circular economy and the bioeconomy and offers potential for the development of innovative materials for this industry.
- Production of sustainable aviation fuel precursors using the oleaginous yeast Rhodotorula toruloides PYCC 5615 cultivated on eucalyptus bark hydrolysatePublication . Saraiva Lopes da Silva, Maria Teresa; Dutra, Francisca; Gomes, Miguel; Costa, Paula; Paradela, Filipe; Ferreira, Frederico Castelo; Torres Faria, Nuno Ricardo; Mugica, Paula; Pinheiro, Helena M.; Sá-Correia, Isabel; Gírio, Francisco; Marques, SusanaABSTRACT: Sustainable aviation fuels (SAF) obtained from renewable sources of carbon can reduce carbon dioxide emissions and contribute for mitigating climate changes. In the present study, the yeast Rhodotorula toruloides PYCC 5615 was found to be highly promising for the bioconversion of eucalyptus bark hydrolysate and the accumulation of intracellular lipids which were further thermochemically processed to bioenergy intermediaries for SAF production. Two growth medium formulations were tested. Eucalyptus bark hydrolysate, obtained by steam explosion followed by enzymatic hydrolysis, was supplemented with yeast nitrogen base medium or with corn steep liquor and mineral medium. The latter produced the highest fatty acid content and productivity (30 % w/w and 0.11 g/ (L.h) respectively). Thereafter, the whole yeast biomass (WB) and the de-oiled biomass (DOB), obtained after lipid extraction, were processed into Bio-crude using a hydrothermal liquefaction (HTL) reactor, with a yield of approximate to 40 % (w/w). The two obtained Bio-crude fractions and the yeast lipids fraction (YL) were further upgraded by hydrodeoxygenation (HDO), to remove oxygen atoms and increase the hydrocarbon content, resulting in a Bio-crude composed of linear long-chain fatty acids suitable for processing to SAF. The best Bio-crude characteristics was observed for WB and YL fractions, with 34.8 % and 40.7 % of hydrocarbons, respectively. Both WB and YL hydrocarbons were composed of C15-C17 compounds. These results demonstrate the potential of an integrated process based on microbial oils from R. toruloides PYCC 5615 to produce SAF precursors from Eucalyptus bark residues, contributing for the sustainable jetfuel bioproduction process.