Loading...
Research Project
Associated Laboratory for Green Chemistry - Clean Technologies and Processes
Funder
Authors
Publications
New proton conductive membranes of indazole- and condensed pyrazolebisphosphonic acid-Nafion membranes for PEMFC
Publication . Teixeira, Fatima; Teixeira, António P. S.; Rangel, C. M.
ABSTRACT: In this work, new doped Nafion membranes for PEMFC are prepared by casting with 1 wt% loading of the prepared indazole- and condensed pyrazolebisphosphonic acids (AzBPs). The new membranes were analysed by ATR-FTIR spectroscopy and their morphology was examined by SEM. Membranes were evaluated for water uptake and ion exchange capacity (IEC), and their hydration number was estimated. The proton conduction properties of the modified membranes were evaluated by electrochemical impedance spectroscopy (EIS), at different temperatures (30, 40, 50 and 60 °C) and relative humidity (RH) (40, 60 and 80%). The proton conductivities of all membranes increase with increasing temperature and RH. Also, all new membranes doped with AzBPs exhibited higher proton conductivities than Nafion N-115, used as a reference and tested at the same experimental conditions, with values up to 1.5-fold. Results show that the incorporation of AzBPs dopants on Nafion membranes enhances the proton conduction throughout the modified membranes. The best proton conductivity was observed for membranes with AzBP1 as dopant, with a value of 94 mS cm-1. These results indicate that the Nafion membranes doped with indazole- and condensed pyrazolebisphosphonic acids are a promising approach for new membranes for PEMFC with improved proton conductivity.
Cr(III) dynamic removal in a fixed-bed column by using a co-gasification char
Publication . Dias, Diogo; Bernardo, Maria; Pinto, Filomena; Fonseca, Isabel Maria; Lapa, Nuno
ABSTRACT: A char (GC) obtained from the co-gasification of rice husk and polyethylene was used in a fixed-bed column with continuous flow for Cr(III) removal assays from synthetic and industrial wastewaters. For comparison purposes, a commercial activated carbon (CAC) was also used. The best experimental conditions in the continuous removal assays were the following ones: Cr(III) inflow concentration = 5 mg L-1, feed flow rate = 3 mL min(-1), mass of adsorbent in the column = 0.8 g, and inflow temperature = 50 degrees C. Under these conditions, the highest uptake capacities were 1.60 and 2.14 mg g(-1) in the synthetic solution, and 3.25 and 7.83 mg g(-1) in the industrial wastewater, for GC and CAC, respectively. These results are different from those obtained under batch conditions in which GC performed better than CAC. Cr(III) removal by both adsorbents occurred due to precipitation, but CAC presented a slightly higher amount of Cr(III) removed due to its highest porosity. The regeneration of GC and CAC was also studied, but both adsorbents showed no capacity to be used in more than one cycle. This study highlighted the importance of studying Cr(III) removal under continuous conditions, as the removal mechanisms may be completely different from the batch assays, affecting the adsorbents' performance.
Highly efficient porous carbons for the removal of W(VI) oxyanion from wastewaters
Publication . Dias, Diogo; Don, Davide; Jandosov, Jakpar; Bernardo, Maria; Pinto, Filomena; Fonseca, Isabel Maria; Sanches, André; Caetano, P. S.; Lyubchyk, Svitlana; Lapa, Nuno
ABSTRACT: Pyrolysis chars derived from rice wastes were chemically activated and used in W(VI) oxyanion adsorption assays in synthetic and mining wastewaters. For comparison purposes, a commercial activated carbon (CAC) was also used. Different experimental conditions were tested in the adsorption assays: solid/liquid ratio (S/L), initial pH, contact time, and initial W concentration. The porous carbon P2C+KOH presented the overall best performance in both media, due to its high surface area (2610 m2 g-1), mesopore volume (1.14 cm3 g-1), and neutral pHpzc (6.92). In the synthetic wastewater, the highest uptake capacity of P2C+KOH (854 mg g-1) was found in the assays with an S/L 0.1 g L-1, an initial pH 2, and an initial W concentration of 150 mg L-1, for 24 h. This value was almost 8 times higher than the one obtained for CAC (113 mg g-1). In the mining wastewater, P2C+KOH showed an even higher uptake capacity (1561 mg g-1) in the assay with the same experimental conditions, which was almost 3 times higher than for CAC (561 mg g-1). These results suggest that P2C+KOH seems to be an efficient alternative to CAC in the W(VI) adsorption from liquid effluents.
Study of the degradation of Nafion modified membranes
Publication . Teixeira, Fatima; Teixeira, António P. S.; Rangel, C. M.
ABSTRACT: The development of new proton exchange membranes for PEM technology in fuel cells and electrolysers with increased durability is paramount to system´s lifetime and scalability. In this work, new modified Nafion membranes are proposed with increased resilience to chemical degradation by H2O2 /Fe2+, mimicking ex-situ radical attack to membrane structure.
Valorisation of spent tire rubber as carbon adsorbents for Pb(II) and W(VI) in the framework of a Circular Economy
Publication . Bernardo, Maria; Lapa, Nuno; Pinto, Filomena; Nogueira, Miguel; Matos, Inês; Ventura, Márcia; Ferraria, Ana Maria; Rego, Ana Maria Botelho do; Fonseca, Isabel Maria
ABSTRACT: Spent tire rubber-derived chars and their corresponding H3PO4 and CO2-activated chars were used as adsorbents in the recovery of Pb(II) ion and (W(VI)) oxyanion from synthetic solutions. The developed chars (both raw and activated) were thoroughly characterized to have insight about their textural and surface chemistry properties. H3PO4-activated chars presented lower surface areas than the raw chars and an acidic surface chemistry which affected the performance of these samples as they showed the lowest removals of the metallic ions. On the other hand, CO2-activated chars presented increased surface areas and increased mineral content compared to the raw chars, having presented higher uptake capacities for both Pb(II) (103-116 mg/g) and W(VI) (27-31 mg/g) ions. Cation exchange with Ca, Mg and Zn ions was appointed as a mechanism for Pb removal, as well as surface precipitation in the form of hydrocerussite (Pb-3(CO3)(2)(OH)(2)). W(VI) adsorption might have been ruled by strong electrostatic attractions between the negatively charged tungstate species and the highly positively charged carbons' surface.The results shown in this work allow concluding that the valorisation of spent tire rubber through pyrolysis and the subsequent activation of the obtained chars is an alternative and a feasible option to generate adsorbent materials with a high uptake capacity of critical metallic elements.
Organizational Units
Description
Keywords
Contributors
Funders
Funding agency
Fundação para a Ciência e a Tecnologia
Funding programme
6817 - DCRRNI ID
Funding Award Number
UIDB/50006/2020