Loading...
Research Project
Applied Molecular Biosciences Unit
Funder
Authors
Publications
A new biosurfactant/bioemulsifier from Gordonia alkanivorans Strain 1B: production and characterization
Publication . Silva, Tiago; Paixão, Susana M.; Tavares, João; Gil, Catia V.; Torres, Cristiana A. V.; Freitas, Filomena; Alves, Luís
ABSTRACT: Biosurfactants and bioemulsifiers (BS/BE) are naturally synthesized molecules, which can be used as alternatives to traditional detergents. These molecules are commonly produced by microorganisms isolated from hydrocarbon-rich environments. Gordonia alkanivorans strain 1B was originally found in such an environment, however little was known about its abilities as a BS/BE producer. The goal of this work was to access the potential of strain 1B as a BS/BE producer and perform the initial characterization of the produced compounds. It was demonstrated that strain 1B was able to synthesize lipoglycoprotein compounds with BS/BE properties, both extracellularly and adhered to the cells, without the need for a hydrophobic inducer, producing emulsion in several different hydrophobic phases. Using a crude BS/BE powder, the critical micelle concentration was determined (CMC = 16.94 mg/L), and its capacity to reduce the surface tension to a minimum of 35.63 mN/m was demonstrated, surpassing many commercial surfactants. Moreover, after dialysis, emulsification assays revealed an activity similar to that of Triton X-100 in almond and sunflower oils. In benzene, the E-24 value attained was 83.45%, which is 30% greater than that of the commercial alternative. The results obtained highlight for the presence of promising novel BS/BE produced by strain 1B.
Exploring the Multifaceted Potential of a Peptide Fraction Derived from Saccharomyces cerevisiae Metabolism: Antimicrobial, Antioxidant, Antidiabetic, and Anti-Inflammatory Properties
Publication . Branco, Patricia; Mauricio, Elisabete; Costa, Ana; Ventura, Diogo; Roma-Rodrigues, Catarina; Duarte, Maria Paula; Fernandes, Alexandra
ABSTRACT: The rising demand for minimally processed, natural, and healthier food products has led to the search for alternative and multifunctional bioactive food components. Therefore, the present study focuses on the functional proprieties of a peptide fraction derived from Saccharomyces cerevisiae metabolism. The antimicrobial activity of the peptide fraction is evaluated against various foodborne pathogens, including Candida albicans, Candida krusei, Escherichia coli, Listeria monocytogenes, and Salmonella sp. The peptide fraction antioxidant properties are assessed using FRAP and DPPH scavenging capacity assays. Furthermore, the peptide fraction's cytotoxicity is evaluated in colorectal carcinoma and normal colon epithelial cells while its potential as an antidiabetic agent is investigated through alpha-amylase and ff-glucosidase inhibitory assays. The results demonstrate that the 2-10 kDa peptide fraction exhibits antimicrobial effects against all tested microorganisms, except C. krusei. The minimal inhibitory concentration for E. coli, L. monocytogenes, and Salmonella sp. remains consistently low, at 0.25 mg/mL, while C. albicans requires a higher concentration of 1.0 mg/mL. Furthermore, the peptide fraction displays antioxidant activity, as evidenced by DPPH radical scavenging activity of 81.03%, and FRAP values of 1042.50 +/- 32.5 mu M TE/mL at 1.0 mg/mL. The peptide fraction exhibits no cytotoxicity in both tumor and non-tumoral human cells at a concentration up to 0.3 mg/mL. Moreover, the peptide fraction presents anti-inflammatory activity, significantly reducing the expression of the TNF ff gene by more than 29.7% in non-stimulated colon cells and by 50% in lipopolysaccharide-stimulated colon cells. It also inhibits the activity of the carbohydrate digestive enzymes alpha-amylase (IC50 of 199.3 +/- 0.9 mu g/mL) and alpha-glucosidase (IC20 of 270.6 +/- 6.0 mu g/mL). Overall, the findings showed that the peptide fraction exhibits antibacterial, antioxidant, anti-inflammatory, and antidiabetic activity. This study represents a step forward in the evaluation of the functional biological properties of S. cerevisiae bioactive peptides.
Evaluation of Biotechnological Active Peptides Secreted by Saccharomyces cerevisiae with Potential Skin Benefits
Publication . Mauricio, Elisabete; Branco, Patricia; Araújo, Ana Luiza Barros; Roma-Rodrigues, Catarina; Lima, Katelene; Duarte, Maria Paula; Fernandes, Alexandra; Albergaria, Helena
ABSTRACT:Biotechnological active peptides are gaining interest in the cosmetics industry due to their antimicrobial, anti-inflammatory, antioxidant, and anti-collagenase (ACE) effects, as well as wound healing properties, making them suitable for cosmetic formulations. The antimicrobial activity of peptides (2–10 kDa) secreted by Saccharomyces cerevisiae Ethanol-Red was evaluated against dermal pathogens using broth microdilution and challenge tests. ACE was assessed using a collagenase activity colorimetric assay, antioxidant activity via spectrophotometric monitoring of nitrotetrazolium blue chloride (NBT) reduction, and anti-inflammatory effects by quantifying TNF-α mRNA in lipopolysaccharides (LPS)-exposed dermal fibroblasts. Wound healing assays involved human fibroblasts, endothelial cells, and dermal keratinocytes. The peptides (2–10 kDa) exhibited antimicrobial activity against 10 dermal pathogens, with the Minimum Inhibitory Concentrations (MICs) ranging from 125 µg/mL for Staphylococcus aureus to 1000 µg/mL for Candida albicans and Streptococcus pyogenes. In the challenge test, peptides at their MICs reduced microbial counts significantly, fulfilling ISO 11930:2019 standards, except against Aspergillus brasiliensis. The peptides combined with MicrocareⓇ SB showed synergy, particularly against C. albicans and A. brasilensis. In vitro, the peptides inhibited collagenase activity by 41.8% and 94.5% at 250 and 1000 µg/mL, respectively, and demonstrated antioxidant capacity. Pre-incubation with peptides decreased TNF-α expression in fibroblasts, indicating anti-inflammatory effects. The peptides do not show to promote or inhibit the angiogenesis of endothelial cells, but are able to attenuate fibrosis, scar formation, and chronic inflammation during the final phases of the wound healing process. The peptides showed antimicrobial, antioxidant, ACE, and anti-inflammatory properties, highlighting their potential as multifunctional bioactive ingredients in skincare, warranting further optimization and exploration in cosmetic applications.
Organizational Units
Description
Keywords
Contributors
Funders
Funding agency
Fundação para a Ciência e a Tecnologia
Funding programme
6817 - DCRRNI ID
Funding Award Number
UIDP/04378/2020