UB - Artigos em revistas internacionais
Permanent URI for this collection
Browse
Browsing UB - Artigos em revistas internacionais by Author "Abreu, Mariana"
Now showing 1 - 5 of 5
Results Per Page
Sort Options
- Admissibility Grid to Support the Decision for the Preferential Routing of Portuguese Endogenous Waste Biomass for the Production of Biogas, Advanced Biofuels, Electricity and HeatPublication . Crujeira, Teresa; Trancoso, Maria Ascensão; Eusebio, Ana; Oliveira, Ana Cristina; Passarinho, Paula; Abreu, Mariana; Marques, Isabel Paula; Marques, Paula; Marques, Susana; Albergaria, Helena; Pinto, Filomena; Costa, Paula; Andre, Rui N.; Girio, Francisco; Moura, PatríciaABSTRACT: A methodology was developed to assess the allocation of different types of endogenous waste biomass to eight technologies for producing electricity, heat, biogas and advanced biofuels. It was based on the identification of key physicochemical parameters for each conversion process and the definition of limit values for each parameter, applied to two different matrices of waste biomass. This enabled the creation of one Admissibility Grid with target values per type of waste biomass and conversion technology, applicable to a decision process in the routing to energy production. The construction of the grid was based on the evaluation of 24 types of waste biomass, corresponding to 48 sets of samples tested, for which a detailed physicochemical characterization and an admissibility assessment were made. The samples were collected from Municipal Solid Waste treatment facilities, sewage sludges, agro-industrial companies, poultry farms, and pulp and paper industries. The conversion technologies and energy products considered were (trans)esterification to fatty acid methyl esters, anaerobic digestion to methane, fermentation to bioethanol, dark fermentation to biohydrogen, combustion to electricity and heat, gasification to syngas, and pyrolysis and hydrothermal liquefaction to bio-oils. The validation of the Admissibility Grid was based on the determination of conversion rates and product yields over 23 case studies that were selected according to the best combinations of waste biomass type versus technological solution and energy product.
- Evaluation of the potential of biomass to energy in Portugal : conclusions from the CONVERTE projectPublication . Abreu, Mariana; Reis, Alberto; Moura, Patrícia; Fernando, Ana Luisa; Luís, Gabriel; Quental, Lídia; Patinha, Pedro; Gírio, FranciscoABSTRACT: The main objective of the Portuguese project "CONVERTE-Biomass Potential for Energy" is to support the transition to a low-carbon economy, identifying biomass typologies in mainland Portugal, namely agri-forest waste, energy crops and microalgae. Therefore, the aim was to design and construct a georeferenced (mapping) database for mainland Portugal, to identify land availability for the implementation of energy crops and microalgae cultures, and to locate agricultural and forestry production areas (including their residues) with potential for sustainable exploitation for energy. The ArcGIS software was used as a Geographic Information System (GIS) tool, introducing the data corresponding to the type of soil, water needs and edaphoclimatic conditions in shapefile and raster data type, to assess the areas for the implantation of the biomass of interest. After analysing the data of interest in each map in ArcGIS, the intersection of all maps is presented, suggesting adequate areas and predicting biomass productions for the implementation of each culture in mainland Portugal. Under the conditions of the study, cardoon (72 kha, 1085 kt), paulownia (81 kha, 26 kt) and microalgae (29 kha, 1616 kt) presented the greater viability to be exploited as biomass to energy in degraded and marginal soils.
- Low indirect land use change (ILUC) energy crops to bioenergy and biofuels: a reviewPublication . Abreu, Mariana; Silva, Luís; Ribeiro, Belina; Ferreira, Alice; Alves, Luís; Paixão, Susana M.; Gouveia, Luisa; Moura, Patrícia; Carvalheiro, Florbela; Duarte, Luís C.; Fernando, Ana Luisa; Reis, Alberto; Gírio, FranciscoABSTRACT: Energy crops are dedicated cultures directed for biofuels, electricity, and heat production. Due to their tolerance to contaminated lands, they can alleviate and remediate land pollution by the disposal of toxic elements and polymetallic agents. Moreover, these crops are suitable to be exploited in marginal soils (e.g., saline), and, therefore, the risk of land-use conflicts due to competition for food, feed, and fuel is reduced, contributing positively to economic growth, and bringing additional revenue to landowners. Therefore, further study and investment in R&D is required to link energy crops to the implementation of biorefineries. The main objective of this study is to present a review of the potential of selected energy crops for bioenergy and biofuels production, when cultivated in marginal/degraded/contaminated (MDC) soils (not competing with agriculture), contributing to avoiding Indirect Land Use Change (ILUC) burdens. The selected energy crops are Cynara cardunculus, Arundo donax, Cannabis sativa, Helianthus tuberosus, Linum usitatissimum, Miscanthus × giganteus, Sorghum bicolor, Panicum virgatum, Acacia dealbata, Pinus pinaster, Paulownia tomentosa, Populus alba, Populus nigra, Salix viminalis, and microalgae cultures. This article is useful for researchers or entrepreneurs who want to know what kind of crops can produce which biofuels in MDC soils
- Microalgae biomass production for biofuels in brazilian scenario : a critical reviewPublication . Santos, Marcela Granato Barbosa dos; Duarte, Renata Lopes; Martins Maciel, Alyne; Abreu, Mariana; Reis, Alberto; Mendonca, Henrique Vieira deABSTRACT: The Brazilian environmental, economic, and social conditions for the long-term establishment of mass culture of microalgae for either biofuel production or greenhouse gases (GHG) abatement are described in detail. A brief historical introduction of the microalgal biotechnology is presented followed by a compilation of Brazilian published research works on microalgae, with special emphasis on microalgal Brazilian biodiversity and applied phycology. Several case studies on Brazilian microalgal biorefineries are presented with special emphasis on wastewater (WW) treatment. The manuscript also adds valuable new information about which regions of the country offer better growing conditions for dozens of endemic species. Favorable climatic and environmental conditions for the cultivation of several microalgae (green) and cyanobacteria species in specific regions of the country are suggested. Finally, based on realistic biomass productivities and product yields for the Brazilian context, several scenarios for biofuel production and/or carbon dioxide (CO2) abatement have been designed, and results are presented and critically discussed. Brazilian self-sufficiency on either fuels for transportation or GHG abatement using exclusively microalgae is quite challenging but achievable accordingly with the present state of the art.
- Microalgae in a global world: New solutions for old problems?Publication . Vieira De Mendonça, Henrique; Assemany, Paula; Abreu, Mariana; De Aguiar Do Couto, Eduardo; Martins Maciel, Alyne; Duarte, Renata Lopes; Santos, Marcela Granato Barbosa dosABSTRACT: The human population blast has brought several problems related with the overconsumption of a wide range of feedstocks and natural resources conducting to their risk of depletion. The consumption of fossil fuels is an example, with increasing levels of exploitation and negative impacts caused by their use. Anthropogenic activities have triggered the over accumulation of many hazardous substances and wastes which are regarded to be detrimental to life in the Earth and to the various planet ecosystems. There is an urgent need to restore natural resources and unwanted residues and wastes to levels prior the demographic explosion. Microalgal biotechnology appears to be pivotal to achieve this goal in a near future to come. This review presents the current resource problems affecting the Earth and how microalgae are expected to be an important part of the solution, discussing how the production of renewable energy from microalgae can help in an integrated way to mitigate different environmental problems. Microalgae are able to convert wastewaters, CO2 and organic residues in marketable biomass for different uses, including biofuels, converting waste in value. An inventory of current microalgal-based biorefineries in operation as well as a directory of companies, products and applications are also presented.
