Repository logo
 

Search Results

Now showing 1 - 4 of 4
  • Microstructure characterization of ODS-RAFM steels
    Publication . Mateus, R.; Carvalho, P.; Nunes, D.; Alves, L. C.; Franco, N.; Correia, J.B.; Fernandes, H.; Silva, C.; Alves, E.; Lindau, R.
    Results of the microstructural characterization of four different RAFM ODS Eurofer 97 batches are presented and discussed. Analyses and observations were performed by nuclear microprobe and scanning and transmission electron microscopy. X-ray elemental distribution maps obtained with proton beam scans showed homogeneous composition within the proton beam spatial resolution and, in particular, pointed to a uniform distribution of ODS (yttria) nanoparticles in the Eurofer 97 matrix. This was confirmed by transmission electron microscopy. Scanning electron microscopy coupled with energy dispersive spectroscopy made evident the presence of chromium carbide precipitation. Precipitates occurred preferentially along grain boundaries (GB) in three of the batches and presented a discrete distribution in the other, as a result of different thermo-mechanical routes. Additional electron backscattered diffraction experiments revealed the crystalline textures in the ferritic polycrystalline structure of the ODS steel samples.
  • Simulation and study of the milling parameters on CuFeTaTiW multicomponent alloy
    Publication . Martins, Ricardo; Gonçalves, António Pereira; Correia, J.B.; Galatanu, Andrei; Alves, E.; Dias, Marta
    ABSTRACT: The CuFeTaTiW multicomponent alloy has been devised as an interlayer thermal barrier in nuclear fusion re-actors. In order to predict the phase constitution of this alloy, two different lines of work were performed: (a) simulation using Molecular dynamics and Monte Carlo and (b) study of the influence of mechanical alloying parameters on the structures formed. The simulation results show that the most stable structure is achieved starting from a bcc type-structure and using Monte Carlo simulation. In fact, in these conditions the separation into two bcc phases Fe-Ta-W and Cu-Ti is predicted at room temperature. However, the experimental preparation of the materials with mechanical alloying revealed that from 2 h of milling a single bcc phase is formed. The structure of the milled powder was not much influenced by the amount of the process control agent and the by the size of the W starting particles, but generally there was formation of Ta2H from the reaction between the powders and the process control agent.
  • Hybrid molecular dynamic Monte Carlo simulation and experimental production of a multi-component Cu-Fe-Ni-Mo-W alloy
    Publication . Dias, Marta; Almeida Carvalho, Patricia; Gonçalves, António Pereira; Alves, E.; Correia, J.B.
    ABSTRACT: High-entropy alloys are a class of materials intensely studied in the last years due to their innovative properties. Their unconventional compositions and chemical structures hold promise for achieving unprecedented combinations of mechanical properties. The Cu-Fe-Ni-Mo-W multicomponent alloy was studied using a combination of simulation and experimental production to test the possibility of formation of a simple solid solution. Therefore, Molecular Dynamics and hybrid Molecular Dynamic/Monte Carlo simulations from 10K up to the melting point of the alloy were analyzed together with the experimental production by arc furnace and powder milling. The Molecular Dynamics simulations starting with a bcc type-structure show the formation of a singlephase bcc solid solution type-structure, whereas using Monte Carlo one, generally produced a two-phase mixture. Moreover, the lowest potential energy was obtained when starting from a fcc type-structure and using Monte Carlo simulation giving rise to the formation of a bcc Fe-Mo-W phase and a Cu-Ni fcc type-structure. Dendritic and interdendritic phases were observed in the sample produced by arc furnace while the milled powder evidence an separation of two phases Cu-Fe-Ni phase and W-Mo type-structures. Samples produced by both methods show the formation of bcc and a fcc type-structures. Therefore, the Monte Carlo simulation seems to be closer with the experimental results, which points to a two-phase mixture formation for the Cu-Fe-Ni-Mo-W multicomponent system.
  • Improvement of Mechanical Properties with Non-Equimolar CrNbTaVW High Entropy Alloy
    Publication . Antão, Francisco; Martins, Ricardo; Correia, J.B.; Silva, R.C. da; Gonçalves, António Pereira; Tejado, Elena; Pastor, Jose Ygnacio; Alves, E.; Dias, Marta
    ABSTRACT: CrNbTaVWx with (x = 1 and 1.7) high entropy alloys have been devised for thermal barriers between the plasma-facing tungsten tiles and the copper-based heat sink in the first wall of fusion nuclear reactors. These novel materials were prepared by ball milling and consolidated by Upgrade Field Assisted Sintering Technology at 1873 K under an applied pressure of 90 MPa for 10 min. In this work, the structural and mechanical properties of these materials were evaluated. Consolidated samples presented a major phase with a bcc-type structure with lattice parameter value of 0.316 nm for CrNbTaVW and CrNbTaVW1.7 compositions. Moreover, observation of the microstructures evidences also two minor phases: Ta-Nb-Cr and Ta-V rich (in which carbon is detected). Despite the similarity in the structural properties of these two alloys, their mechanical properties are distinct. The flexural stress for the sample with higher amount of W (CrNbTaVW1.7) is higher by 50% in the 298-873 K range, with an increased strain to fracture, which can be associated with reduced brittleness caused by the additional W incorporation.