Repository logo
 
Loading...
Profile Picture
Person

Batista Branco, Patricia Alexandra

Search Results

Now showing 1 - 10 of 12
  • Exploring the Multifaceted Potential of a Peptide Fraction Derived from Saccharomyces cerevisiae Metabolism: Antimicrobial, Antioxidant, Antidiabetic, and Anti-Inflammatory Properties
    Publication . Branco, Patricia; Mauricio, Elisabete; Costa, Ana; Ventura, Diogo; Roma-Rodrigues, Catarina; Duarte, Maria Paula; Fernandes, Alexandra
    ABSTRACT: The rising demand for minimally processed, natural, and healthier food products has led to the search for alternative and multifunctional bioactive food components. Therefore, the present study focuses on the functional proprieties of a peptide fraction derived from Saccharomyces cerevisiae metabolism. The antimicrobial activity of the peptide fraction is evaluated against various foodborne pathogens, including Candida albicans, Candida krusei, Escherichia coli, Listeria monocytogenes, and Salmonella sp. The peptide fraction antioxidant properties are assessed using FRAP and DPPH scavenging capacity assays. Furthermore, the peptide fraction's cytotoxicity is evaluated in colorectal carcinoma and normal colon epithelial cells while its potential as an antidiabetic agent is investigated through alpha-amylase and ff-glucosidase inhibitory assays. The results demonstrate that the 2-10 kDa peptide fraction exhibits antimicrobial effects against all tested microorganisms, except C. krusei. The minimal inhibitory concentration for E. coli, L. monocytogenes, and Salmonella sp. remains consistently low, at 0.25 mg/mL, while C. albicans requires a higher concentration of 1.0 mg/mL. Furthermore, the peptide fraction displays antioxidant activity, as evidenced by DPPH radical scavenging activity of 81.03%, and FRAP values of 1042.50 +/- 32.5 mu M TE/mL at 1.0 mg/mL. The peptide fraction exhibits no cytotoxicity in both tumor and non-tumoral human cells at a concentration up to 0.3 mg/mL. Moreover, the peptide fraction presents anti-inflammatory activity, significantly reducing the expression of the TNF ff gene by more than 29.7% in non-stimulated colon cells and by 50% in lipopolysaccharide-stimulated colon cells. It also inhibits the activity of the carbohydrate digestive enzymes alpha-amylase (IC50 of 199.3 +/- 0.9 mu g/mL) and alpha-glucosidase (IC20 of 270.6 +/- 6.0 mu g/mL). Overall, the findings showed that the peptide fraction exhibits antibacterial, antioxidant, anti-inflammatory, and antidiabetic activity. This study represents a step forward in the evaluation of the functional biological properties of S. cerevisiae bioactive peptides.
  • Purification and biochemical/molecular characterisation of antimicrobial peptides produced by Saccharomyces cerevisiae and evaluation of their mode of action
    Publication . Branco, Patricia; Prista, Catarina; Albergaria, Helena; Arneborg, Nils
    ABSTRACT: The antagonistic effect exerted by Saccharomyces cerevisiae against other microbial species during wine fermentations was recently ascribed to its capacity to secrete antimicrobial peptides (AMPs). The main goal of the present work was to purify, identify and characterize those AMPs. Firstly, the AMPs were purified by means of chromatographic techniques (size-exclusion and ion-exchange) and then characterized regarding their amino acid sequence, codifying genes and antimicrobial/biochemical properties. Analysis of the purified AMPs by mass spectrometry revealed that the natural biocide is mainly composed by two peptides (AMP1 and AMP2/3) derived from the isoenzymes of the glycolytic protein glyceraldehyde 3-phosphate dehydrogenase (GAPDH). The spectrum of action of the naturally-excreted AMPs, which we named saccharomycin, is wide and includes several wine-related non-Saccharomyces yeasts, such as Hanseniaspora guilliermondii, Torulaspora delbrueckii, Kluyveromyces marxianus, Lachancea thermotolerans and Dekkera bruxellensis, as well as bacteria such as Oenococcus oeni. The antimicrobial effect of saccharomycin is significantly higher than that of synthetic analogues (AMP1 and AMP2/3) and depends on their complementary action and relative proportion. The mode of action of the AMPs was evaluated against sensitive yeast cells. The AMPs induce cell membrane permeabilization, loss of pH homeostasis and increase/decrease of H+-influx/-efflux. They also induce cell molecular markers typical of death by apoptosis in H. guilliermondii. Our work also revealed the accumulation of these GAPDH-derived peptides on the surface of stationary-grown (48 h) cells of S. cerevisiae, which induce death of non-Saccharomyces yeasts (H. guilliermondii and L. thermotolerans) by direct cell-cell contact. Finally, S. cerevisiae strains over-expressing these AMPs prevented growth of D. bruxellensis in co-fermentations, decreasing the levels of sulphur dioxide needed to control wine spoilage. Thus, the potential of these AMPs to be used as biopreservative in wine seems promising.
  • Wine Spoilage Control: Impact of Saccharomycin on Brettanomyces bruxellensis and Its Conjugated Effect with Sulfur Dioxide
    Publication . Branco, Patricia; Coutinho, Rute; Malfeito-Ferreira, Manuel; Prista, Catarina; Albergaria, Helena
    ABSTRACT: The yeast Brettanomyces bruxellensis is one of the most dangerous wine contaminants due to the production of phenolic off-flavors such as 4-ethylphenol. This microbial hazard is regularly tackled by addition of sulfur dioxide (SO2). Nevertheless, B. bruxellensis is frequently found at low levels (ca 10(3) cells/mL) in finished wines. Besides, consumers health concerns regarding the use of sulfur dioxide encouraged the search for alternative biocontrol measures. Recently, we found that Saccharomyces cerevisiae secretes a natural biocide (saccharomycin) that inhibits the growth of different B. bruxellensis strains during alcoholic fermentation. Here we investigated the ability of S. cerevisiae CCMI 885 to prevent B. bruxellensis ISA 2211 growth and 4-ethylphenol production in synthetic and true grape must fermentations. Results showed that B. bruxellensis growth and 4-ethylphenol production was significantly inhibited in both media, although the effect was more pronounced in synthetic grape must. The natural biocide was added to a simulated wine inoculated with 5 x 10(2) cells/mL of B. bruxellensis, which led to loss of culturability and viability (100% dead cells at day-12). The conjugated effect of saccharomycin with SO2 was evaluated in simulated wines at 10, 12, 13 and 14% (v/v) ethanol. Results showed that B. bruxellensis proliferation in wines at 13 and 14% (v/v) ethanol was completely prevented by addition of 1.0 mg/mL of saccharomycin with 25 mg/L of SO2, thus allowing to significantly reduce the SO2 levels commonly used in wines (150-200 mg/L).
  • Interactions between Saccharomyces cerevisiae and Hanseniaspora guilliermondii: cell-cell contact mechanism
    Publication . Branco, Patricia; Kemsawasd, Varongsiri; Arneborg, Nils; Albergaria, Helena
    Several studies have shown that the early death of non-Saccharomyces during wine fermentations are due to yeast-yeast interactions induced by Saccharomyces cerevisiae (Sc) through different mechanisms such as growth arrest mediated by a cell-cell contact mechanism (Nissen et al. 2003) and death mediated by killer-like toxins (Pérez-Nevado et al 2006; Albergaria et al. 2010). Besides, previous work also showed that death of non-Saccharomyces in co-cultivation with Sc is always triggered at the end of exponential growth phase (Pérez-Nevado et al 2006). In order to investigate the role of cell-cell contact in the early death of non-Saccharomyces, we performed assays in which Sc cells pre-grown at enological growth conditions for 12 and 48 h, respectively, were in direct contact with Hanseniaspora guilliermondii (Hg) cells at high cellular density (107-108 cells/ml) in a carbon-free medium. As a negative control we performed similar assays in which Sc and Hg cells were separated by a dialysis tube (pore cut-off of 1000 kDa) and as a positive control a single Hg culture. Results showed that Hg cell density decreased by 2 orders of magnitude (i.e. from 108-106 cells/ml) in contact with 48 h-grown Sc cells, while its viability remained unchanged (108cfu/ml) in the presence of 12 h-grown Sc cells. Moreover, Hg viability was not affected both in the dialysis tube experiments and single culture, which confirmed the death-induced cell-cell contact phenomenon.
  • Dominance of Saccharomyces cerevisiae in wine fermentations: secretion of antimicrobial peptides and microbial interactions 
    Publication . Albergaria, Helena; Branco, Patricia; Francisco, Diana; Coutinho, Rute; Monteiro, Margarida; Malfeito-Ferreira, Manuel; Arneborg, Nils; Almeida, M. Gabriela; Caldeira, Jorge
    In present work we investigated the antagonistic effect by S. cerevisiae against several wine-related microbial species vis-à-vis the secretion of antimicrobial peptides (AMPs).
  • Evaluation of the biocontrol potential of a commercial yeast starter against fuel-ethanol fermentation contaminants
    Publication . Branco, Patricia; Diniz, Mário; Albergaria, Helena
    ABSTRACT: Lactic acid bacteria (LAB) and Brettanomyces bruxellensis are the main contaminants of bioethanol fermentations. Those contaminations affect Saccharomyces cerevisiae performance and reduce ethanol yields and productivity, leading to important economic losses. Currently, chemical treatments such as acid washing and/or antibiotics are used to control those contaminants. However, these control measures carry environmental risks, and more environmentally friendly methods are required. Several S. cerevisiae wine strains were found to secrete antimicrobial peptides (AMPs) during alcoholic fermentation that are active against LAB and B. bruxellensis strains. Thus, in the present study, we investigated if the fuel-ethanol commercial starter S. cerevisiae Ethanol Red (ER) also secretes those AMPs and evaluated its biocontrol potential by performing alcoholic fermentations with mixed-cultures of ER and B. bruxellensis strains and growth assays of LAB in ER pre-fermented supernatants. Results showed that all B. bruxellensis strains were significantly inhibited by the presence of ER, although LAB strains were less sensitive to ER fermentation metabolites. Peptides secreted by ER during alcoholic fermentation were purified by gel-filtration chromatography, and a bioactive fraction was analyzed by ELISA and mass spectrometry. Results confirmed that ER secretes the AMPs previously identified. That bioactive fraction was used to determine minimal inhibitory concentrations (MICs) against several LAB and B. bruxellensis strains. MICs of 1-2 mg/mL were found for B. bruxellensis strains and above 2 mg/mL for LAB. Our study demonstrates that the AMPs secreted by ER can be used as a natural preservative in fuel-ethanol fermentations.
  • Wine Microbial Consortium: Seasonal Sources and Vectors Linking Vineyard and Winery Environments
    Publication . Camilo, Sofia; Chandra, Mahesh; Branco, Patricia; Malfeito-Ferreira, Manuel
    ABSTRACT: Winemaking involves a wide diversity of microorganisms with different roles in the process. The wine microbial consortium (WMC) includes yeasts, lactic acid bacteria and acetic acid bacteria with different implications regarding wine quality. Despite this technological importance, their origin, prevalence, and routes of dissemination from the environment into the winery have not yet been fully unraveled. Therefore, this study aimed to evaluate the WMC diversity and incidence associated with vineyard environments to understand how wine microorganisms overwinter and enter the winery during harvest. Soils, tree and vine barks, insects, vine leaves, grapes, grape musts, and winery equipment were sampled along four seasons. The isolation protocol included: (a) culture-dependent microbial recovery; (b) phenotypical screening to select fermenting yeasts, lactic acid, and acetic acid bacteria; and (c) molecular identification. The results showed that during all seasons, only 11.4% of the 1424 isolates presumably belonged to the WMC. The increase in WMC recovery along the year was mostly due to an increase in the number of sampled sources. Acetic acid bacteria (Acetobacter spp., Gluconobacter spp., Gluconoacetobacter spp.) were mostly recovered from soils during winter while spoilage lactic acid bacteria (Leuconostoc mesenteroides and Lactobacillus kunkeii) were only recovered from insects during veraison and harvest. The fermenting yeast Saccharomyces cerevisiae was only isolated from fermented juice and winery equipment. The spoilage yeast Zygosaccharomyces bailii was only recovered from fermented juice. The single species bridging both vineyard and winery environments was the yeast Hanseniaspora uvarum, isolated from insects, rot grapes and grape juice during harvest. Therefore, this species appears to be the best surrogate to study the dissemination of the WMC from vineyard into the winery. Moreover, the obtained results do not evidence the hypothesis of a perennial terroir-dependent WMC given the scarcity of their constituents in the vineyard environment along the year and the importance of insect dissemination.
  • Antimicrobial peptides from Saccharomyces cerevisiae induce physiological changes in Hanseniaspora guilliermondii
    Publication . Branco, Patricia; Albergaria, Helena; Arneborg, Nils
    Saccharomyces cerevisiae secretes antimicrobial peptides (AMPs) during alcoholic fermentation that are active against other wine-related yeasts (e.g. Hanseniaspora guilliermondii) (Albergaria et al., 2010) and bacteria (e.g. Oenococcus oeni) (Osborne and Edwards, 2007). In the present study we assessed the physiological changes induced by those AMPs on sensitive yeast cells of Hanseniaspora guilliermondii, namely membrane permeability and intracellular pH (pHi) alterations. Membrane permeability was evaluated by staining cells with propidium iodide (PI) and pHi by the fluorescence ratio imaging microscopy (FRIM) technique (Guldfeldt and Arneborg, 1998). Results showed that after 20 min of incubation with inhibitory concentrations of AMPs, the average pHi of cells dropped from 6.5 to 5.4. After 8 h of incubation, 32% of the cells had lost their ĢpH (=pHi-pHext) and after 24 h that percentage rose to 77%. The culturability (plating) and viability (PI staining) of the sensitive yeast cells also decreased in the presence of the AMPs. After 24 h of exposure to AMPs, 61% of the cells were dead (PI-stained) and the number of viable cells fell from 1 ~105 to 1.5 CFU/ml, which means that virtually all cells (99.999%) became unculturable but a sub-population of 39% of cells remained in a viable but non-culturable (VBNC) state. However, those VBNC cells were able to recover their culturability after incubation at optimal growth conditions. Our study revealed that the mode of action of these AMPs seems to be primarily targeted to the cell membranes, reducing their permeability and preventing cells to maintain pH homeostasis.
  • Identification of novel GAPDH-derived antimicrobial peptides secreted by Saccharomyces cerevisiae and involved in wine microbial interactions
    Publication . Branco, Patricia; Francisco, Diana; Chambon, Christophe; Hébraud, Michel; Arneborg, Nils; Gabriela Almeida, M.; Caldeira, Jorge; Albergaria, Helena
    Saccharomyces cerevisiae plays a primordial role in alcoholic fermentation and has a vastworldwide application in the production of fuel-ethanol, food and beverages. The dominance of S. cerevisiae over other microbial species during alcoholic fermentations has been traditionally ascribed to its higher ethanol tolerance. However, recent studies suggested that other phenomena, such as microbial interactions mediated by killer-like toxins, might play an important role. Here we show that S. cerevisiae secretes antimicrobial peptides (AMPs) during alcoholic fermentation that are active against a wide variety of wine-related yeasts (e.g. Dekkera bruxellensis) and bacteria (e.g. Oenococcus oeni). Mass spectrometry analyses revealed that these AMPs correspond to fragments of the S. cerevisiae glyceraldehyde 3-phosphate dehydrogenase (GAPDH) protein. The involvement of GAPDH-derived peptides in wine microbial interactions was further sustained by results obtained in mixed cultures performed with S. cerevisiae single mutants deleted in each of the GAPDH codifying genes (TDH1-3) and also with a S. cerevisiae mutant deleted in the YCA1 gene, which codifies the apoptosis-involved enzyme metacaspase. These findings are discussed in the context of wine microbial interactions, biopreservation potential and the role of GAPDH in the defence system of S. cerevisiae.
  • Saccharomyces cerevisiae and Dekkera bruxellensis interactions in alcoholic fermentations: growth and 4-ethylphenol production
    Publication . Coutinho, Rute; Branco, Patricia; Monteiro, Margarida; Malfeito-Ferreira, Manuel; Albergaria, Helena
    The yeast Dekkera/Brettanomyces bruxellensis can cause enormous economic losses both in wine industry and fuel-ethanol processes due to production of phenolic off-flavour compounds and low ethanol productivities. In winemaking this microbial hazard is usually tackled by the use of chemical preservatives such as sulphur dioxide. In spite of this, D. bruxellensis strains are frequently found in wines at low levels (ca 103 cells/ml) where they can metabolise residual sugars producing phenolic off-flavours compounds, such as 4-ethyl phenol. In the present work we investigated S. cerevisiae and D. bruxellensis interactions during alcoholic fermentations and evaluated the effectiveness of antimicrobial peptides secreted by S. cerevisiae to prevent growth of the main wine spoilage yeast and the production of 4-ethylphenol. Several fermentations were performed with single cultures of D. bruxellensis and mixed cultures of S. cerevisiae and D. bruxellensis, both in synthetic grape juice (SGJ) and grape must. Yeast growth (culturability and viability) and fermentation performance (i.e. sugars consumption, ethanol and 4-ethylphenol production) of those fermentations was accessed by different methods, namely by florescence in situ hybridization and flow cytometry. Results showed that S. cerevisiae significantly reduced the growth of D. bruxellensis and the production of 4-ethylphenol both in SGJ and grape must fermentations performed with mixed cultures. Moreover, our work also showed that antimicrobial peptides secreted by S. cerevisiae are effective to prevent growth of D. bruxellensis and production of phenolic off-flavor compounds in wine.